递归--八皇后问题(Java)

博客说明

文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!

问题介绍

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法

问题思路

  1. 第一个皇后先放第一行第一列
  2. 第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
  3. 继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
  4. 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
  5. 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤

代码思路

创建一个一维数组代替原本的二维数组,只针对列和斜线的判断

采用循环来判断在第n个皇后的不同列(i)是否冲突

使用递归来判断不同的皇后的情况

代码

package question;public class Queen {    //定义最大的行    int max = 8;    //创建一维数组存储每行的列的位置    int[] array = new int[max];    //结果数    static int count = 0;    //检查是否冲突的次数    static int judgecount = 0;    public static void main(String[] args) {        Queen queen = new Queen();        queen.check(0);        System.out.printf("一共有%d总解法", count);        System.out.println();        System.out.printf("一共有%d次判断冲突", judgecount);    }    //放置皇后    private void check(int n) {        if (n == max) {  //已经放置好            //打印函数            print();            return;        }        //依次放置皇后的列数        for (int i = 0; i < max; i++) {            //把皇后放置到该行的第一列            array[n] = i;            //判断当前皇后在i列时是否冲突            if (judge(n)) { //不冲突                //接着放n+1个皇后(递归)                check(n + 1);            }        }    }          //判断是否冲突    private boolean judge(int n) {        judgecount++;        for (int i = 0; i < n; i++) {            //由于n代表行,所以不会出现在同一行的情况,判断是否在同一列,判断是否在同一斜线上            if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {                return false;            }        }        return true;    }    //打印结果    private void print() {        count++;        for (int i = 0; i < array.length; i++) {            System.out.print(array[i] + " ");        }        System.out.println();    }}

结果

0 4 7 5 2 6 1 3 0 5 7 2 6 3 1 4 0 6 3 5 7 1 4 2 0 6 4 7 1 3 5 2 1 3 5 7 2 0 6 4 1 4 6 0 2 7 5 3 1 4 6 3 0 7 5 2 1 5 0 6 3 7 2 4 1 5 7 2 0 3 6 4 1 6 2 5 7 4 0 3 1 6 4 7 0 3 5 2 1 7 5 0 2 4 6 3 2 0 6 4 7 1 3 5 2 4 1 7 0 6 3 5 2 4 1 7 5 3 6 0 2 4 6 0 3 1 7 5 2 4 7 3 0 6 1 5 2 5 1 4 7 0 6 3 2 5 1 6 0 3 7 4 2 5 1 6 4 0 7 3 2 5 3 0 7 4 6 1 2 5 3 1 7 4 6 0 2 5 7 0 3 6 4 1 2 5 7 0 4 6 1 3 2 5 7 1 3 0 6 4 2 6 1 7 4 0 3 5 2 6 1 7 5 3 0 4 2 7 3 6 0 5 1 4 3 0 4 7 1 6 2 5 3 0 4 7 5 2 6 1 3 1 4 7 5 0 2 6 3 1 6 2 5 7 0 4 3 1 6 2 5 7 4 0 3 1 6 4 0 7 5 2 3 1 7 4 6 0 2 5 3 1 7 5 0 2 4 6 3 5 0 4 1 7 2 6 3 5 7 1 6 0 2 4 3 5 7 2 0 6 4 1 3 6 0 7 4 1 5 2 3 6 2 7 1 4 0 5 3 6 4 1 5 0 2 7 3 6 4 2 0 5 7 1 3 7 0 2 5 1 6 4 3 7 0 4 6 1 5 2 3 7 4 2 0 6 1 5 4 0 3 5 7 1 6 2 4 0 7 3 1 6 2 5 4 0 7 5 2 6 1 3 4 1 3 5 7 2 0 6 4 1 3 6 2 7 5 0 4 1 5 0 6 3 7 2 4 1 7 0 3 6 2 5 4 2 0 5 7 1 3 6 4 2 0 6 1 7 5 3 4 2 7 3 6 0 5 1 4 6 0 2 7 5 3 1 4 6 0 3 1 7 5 2 4 6 1 3 7 0 2 5 4 6 1 5 2 0 3 7 4 6 1 5 2 0 7 3 4 6 3 0 2 7 5 1 4 7 3 0 2 5 1 6 4 7 3 0 6 1 5 2 5 0 4 1 7 2 6 3 5 1 6 0 2 4 7 3 5 1 6 0 3 7 4 2 5 2 0 6 4 7 1 3 5 2 0 7 3 1 6 4 5 2 0 7 4 1 3 6 5 2 4 6 0 3 1 7 5 2 4 7 0 3 1 6 5 2 6 1 3 7 0 4 5 2 6 1 7 4 0 3 5 2 6 3 0 7 1 4 5 3 0 4 7 1 6 2 5 3 1 7 4 6 0 2 5 3 6 0 2 4 1 7 5 3 6 0 7 1 4 2 5 7 1 3 0 6 4 2 6 0 2 7 5 3 1 4 6 1 3 0 7 4 2 5 6 1 5 2 0 3 7 4 6 2 0 5 7 4 1 3 6 2 7 1 4 0 5 3 6 3 1 4 7 0 2 5 6 3 1 7 5 0 2 4 6 4 2 0 5 7 1 3 7 1 3 0 6 4 2 5 7 1 4 2 0 6 3 5 7 2 0 5 1 4 6 3 7 3 0 2 5 1 6 4 一共有92总解法一共有15720次判断冲突

感谢

尚硅谷

万能的网络

以及勤劳的自己