第一期算法专题概述

作为第一期算法训练,其难度并不难。但是作为正常的算法学习者而言。不应该被当下所束缚,所以这里会尽可能会说到更多的方法。作为对之前算法学习的回顾。这里用到的方法会在其他的文档中做出详细的描述。

0~n-1 缺失的数字

题目描述:一个长度为n-1的递增排序数组中的所有数字都是唯一的,并且每个数字都在范围0~n-1之内。在范围0~n-1内的n个数字中有且只有一个数字不在该数组中,请找出这个数字。

示例一:

输入:[0,1,3]

输出:2

示例二:

输入:[0,1,2,3,4,5,6,7,9]

输出:8

限制:

1 <= 数组长度 <= 10000


思路:

一个一个找,直到nums[i] != i; 即可。

这里一个一个找也是有不同的方式的:

  1. 单纯的用if判别;
  2. 按位”异或“操作;
  3. 算出nums数组中所有数字的总和,然后一个一个的减。最后减完了,直接返回即可;

代码会在后面给出。

但是这里想说的思路是一个二分法的思路;

我们不想一个一个的找,而是利用有序这个天生的条件。使用二分法。

代码(代码来源于网络)

//逐位异或操作class Solution {public:    int missingNumber(vector<int>& nums) {        int res=nums.size();        for(int i=0;i<nums.size();i++)        {            res^=nums[i];            res^=i;        }        return res;    }};//用sum一个一个的减class Solution {public:    int missingNumber(vector<int>& nums) {        int sum=(nums.size()*(nums.size()+1))/2;        for(int i=0;i<nums.size();i++)        {            sum-=nums[i];        }        return sum;    }};//二分法int GetMissingNum(const int* num, int len){    if(num == NULL || len <= 0)        return -1;     int left = 0; //二分查找最左边元素下标    int right = len-1;    //二分查找最右边元素下标     while (left <= right)    //查找过程    {        int mid = (left + right) >> 1;    //中间元素下标         if(num[mid] != mid)    //表示mid处或其左边有元素缺失        {            //若mid == 0或mid前一个元素数字和下标相等,则mid即为所求            if(mid == 0 || num[mid-1] == mid - 1)                return mid;             right = mid - 1;    //right减小,往左缩小范围,继续查找        }        else //往右半部分查找        {            left = mid + 1;         }    }     if (left == len)    //查找到最后一个元素,其即为所求        return len;     return -1;    //无效输入,返回-1}

最长连续递增序列

描述:给定一个未经排序的整数数组,找到最长且连续的的递增序列,并返回该序列的长度。

示例一:

输入: [1,3,5,4,7]
输出: 3
解释: 最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为5和7在原数组里被4隔开。

示例二:

输入: [2,2,2,2,2]输出: 1解释: 最长连续递增序列是 [2], 长度为1。

限制:数组长度不会超过10000。


思路:

这里给出两个思路:

  1. 滑动窗口:挨个找每个元素的滑动窗口。
  2. 动态规划:之后专门文档讲解动态规划的种种。有关本题目的动态规划相对容易,不需要显示dp数组只需要给结果就行。

代码:

//双指针class Solution {public:  // 滑动窗口    int findLengthOfLCIS(vector<int>& nums) {       if(nums.empty()) return 0;       int n=nums.size(),ans=0,ancher=0;       for(int i=0;i<n;i++){           if(nums[i-1]>=nums[i]){               ancher=i; // 更改一次滑动窗口           }else{                ans=max(res,i-ancher+1);  // 更改滑动窗口时,更新res           }        }    return ans;    }};//动态规划:class Solution {public:    int findLengthOfLCIS(vector<int>& nums) {        if(nums.empty()) return 0;        int n = nums.size(), cnt = 1, ans = 1;        if(n<=1) return n;        for(int i=1;i<n;i++)        {            if(nums[i]>nums[i-1])                cnt++;            else cnt = 1;            ans = max(ans, cnt);        }        return ans;    }};//双指针:class Solution {public:    int findLengthOfLCIS(vector<int>& nums) {        if(nums.empty()) return 0;        int n=nums.size(),first=0,second,ans=1;        for(second=1;second<n;)  // 后面的那个指针遍历到最后        {            int tem=1;                        if(nums[second]>nums[second-1])  // 固定一次前指针,得到一个有序的个数            {                                second++;                tem=second-first;  // 固定一次前指针,得到最大的个数                ans=max(ans,tem);            }            else   // 当不在大于前一个的时候,            {                first=second;  // 把慢指针指向当前数值                second++;  // 快指针往前                ans=max(ans,tem);  //比较当前最大值和之前答案取最大                tem=1;            }                    }    return ans;    }};

合并两个有序数组

描述:

给你两个有序整数数组 nums1nums2,请你将 nums2 合并到 nums1使 nums1 成为一个有序数组。

说明:

  • 初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。
  • 你可以假设 nums1 有足够的空间(空间大小大于或等于 m + n)来保存 nums2 中的元素。

示例:

输入:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6], n = 3

输出: [1,2,2,3,5,6]


思路:

代码:

class Solution {public:    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {        int i = m - 1; //作为nums1数组的指针        int j = n - 1; //作为nums2数组的指针        int p = m + n - 1;  //最终的nums1数组的位置指针        while(j >= 0 && i >= 0){            if(nums2[j] > nums1[i]){                nums1[p--] = nums2[j--];            }            else{                nums1[p--] = nums1[i--];            }        }        while(i >= 0){            nums1[p--] = nums1[i--];        }        while(j >= 0){            nums1[p--] = nums2[j--];        }    }};

公交站之间的距离

描述:

环形公交路线上有 n 个站,按次序从 0 到 n - 1 进行编号。我们已知每一对相邻公交站之间的距离,distance[i] 表示编号为 i 的车站和编号为 (i + 1) % n 的车站之间的距离。

环线上的公交车都可以按顺时针和逆时针的方向行驶。

返回乘客从出发点 start 到目的地 destination 之间的最短距离。

示例 1:

输入:distance = [1,2,3,4], start = 0, destination = 1
输出:1
解释:公交站 0 和 1 之间的距离是 1 或 9,最小值是 1。

示例 2:

输入:distance = [1,2,3,4], start = 0, destination = 2
输出:3
解释:公交站 0 和 2 之间的距离是 3 或 7,最小值是 3。

示例 3:

~~~~

输入:distance = [1,2,3,4], start = 0, destination = 3
输出:4
解释:公交站 0 和 3 之间的距离是 6 或 4,最小值是 4。

限制:

  • 1 <= n <= 10^4
  • distance.length == n
  • 0 <= start, destination < n
  • 0 <= distance[i] <= 10^4

思路:

和补码的想法类似:sum是一定的,而言只有一个环,那么情况就是直接的距离d还是反绕一圈的距离sum-d哪一个更小。

代码:

class Solution {public:    int distanceBetweenBusStops(vector<int>& distance, int start, int destination) {        int sum = 0;        int a = 0,i;        for(int i = 0; i < distance.size(); i++)        {            sum+=distance[i];        }                for(i = start>destination?destination:start ; i < (start>destination?start:destination); i++)        {            a += distance[i];        }        return a>(sum-a)?(sum-a):a;    }};

删除数组中的重复项

描述:

给定一个排序数组,你需要在 原地 删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。

不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。

示例 1:

给定数组 nums = [1,1,2],

函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。

你不需要考虑数组中超出新长度后面的元素。

示例 2:

给定 nums = [0,0,1,1,1,2,2,3,3,4],

函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。

你不需要考虑数组中超出新长度后面的元素。

说明:

为什么返回数值是整数,但输出的答案是数组呢?

请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。

你可以想象内部操作如下:

// nums 是以“引用”方式传递的。也就是说,不对实参做任何拷贝
int len = removeDuplicates(nums);

// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中该长度范围内的所有元素。
for (int i = 0; i < len; i++) {

print(nums[i]);

}


思路:

首先看说明,修改操作对数组调用者是可见的。这就意味的别做直接把元素拿出扔进set里面,再返回结果这种偷鸡摸狗的操作,乖乖自己写。

思路1:

其问题的核心思想是扫描和替换。仍然可以使用双指针操作。

思路2:

用index记录不重复数字的个数。

如果nums[i] != nums[i-1].则出现了新的不重复值,令nums[index] = nums[i]即可

值得注意的是:第一个数字nums[0]肯定要记录下来。所以判断条件是i-1不是i+1.而且i+1还要作数组的判断。

思路3:

在思路2里面当不相等时则判断有不重复数字。但是数字是递增的,所以只有后一个>前一个也是出现了新的不重复数字。其优势在于解决了思路2的特殊情况,即空数组情况。

代码:

//双指针(Java也能实现指针思路):public class Solution {        public int replaceTwo(int[] nums){                     if(nums.length <= 2) {                return nums.length;            }             //1,1,1,2,2,3                         int count = 1;            //count为元素重复次数            int k = 1;     //核心思想是替换,将元素重复次数大于2的部分忽略,将其他合法元素移动到前面合法区域。           //这里用i和k同时进行扫描,但是,当元素count不小于2时,(即两数相等次数达到2,也就是说相同元素达到3时)     //这时,k会停下,直到i找到下一个与当前k-1指向当元素不相等的那一个坐标,才继续进行替换,重复所有操作。                   for(int i = 1; i < nums.length; i++){                //如果相等,则重复次数加1                if(nums[i] == nums[i-1]) {                                        if(count < 2) {                        //当重复达到两次时,才进行变换操作                        nums[k++] = nums[i];                        count++;                    }                }else {                    //如果遇到两数不想等。则情况count次数                    count = 1;                    nums[k++] = nums[i];                                    }            }                        return k;            }        public static void main(String[] args) {        Solution sl = new Solution();        int nums1[] = {0,0,1,1,1,2,3,3};        int nums2[] = {0,0,1,1,1,2,3,3};        int len1 = sl.replaceTwo(nums1);        int len2 = sl.replaceTwo(nums2);        for(int i = 0;i < len1; i++){            System.out.print(nums1[i] + " ");        }        System.out.println();        for(int j = 0;j < len2; j++){            System.out.print(nums2[j] + " ");        }    }}
//思路2class Solution {public:    int removeDuplicates(vector<int>& nums) {        int n = nums.size();        if (n == 0) {            return 0;        }        int index = 0;        // nums[0]不变,index从1开始赋值。        for (auto i = 1; i < n; ++ i) {            if (nums[i] != nums[i - 1]) {                index ++;                nums[index] = nums[i];            }        }        return index + 1;    }};//思路3class Solution {public:    int removeDuplicates(vector<int>& nums) {        int i = !nums.empty();        for (int n : nums)            if (n > nums[i - 1])                nums[i ++] = n;        return i;    }};