硬件编解码
如何利用日益强大的硬件来实现高效的编解码有则非比寻常的意义,对于开发者来说,面对日益增加的不同硬件,带来的不同的接口,如何快速的使用和对接,本身就是一个问题,还好ffmpeg为了我们提供非常好的解决方案,完全不用去关心底层的实现,一切面向接口的良好体现。
hwcontext模块
支持的平台
static const char *const hw_type_names[] = { [AV_HWDEVICE_TYPE_CUDA] = "cuda", //CUDA是Nvidia出的一个GPU计算库 [AV_HWDEVICE_TYPE_DRM] = "drm", //DRM 是linux 下的图形渲染架构(Direct Render Manager) [AV_HWDEVICE_TYPE_DXVA2] = "dxva2",//微软dx套件,使用D3D9 [AV_HWDEVICE_TYPE_D3D11VA] = "d3d11va",//微软dx套件,使用D3D11 [AV_HWDEVICE_TYPE_OPENCL] = "opencl",//第一个面向异构系统(此系统中可由CPU,GPU或其它类型的处理器架构组成)的并行编程的开放式标准。面向GPU编程 [AV_HWDEVICE_TYPE_QSV] = "qsv",//英特尔Quick Sync Video,号称地球最强 [AV_HWDEVICE_TYPE_VAAPI] = "vaapi", //Video Acceleration Api,UNINX下的编码接口,intel提供 [AV_HWDEVICE_TYPE_VDPAU] = "vdpau", //Video Decode and Presentation API for Unix ,NVIDIA提供的 [AV_HWDEVICE_TYPE_VIDEOTOOLBOX] = "videotoolbox", // mac iOS [AV_HWDEVICE_TYPE_MEDIACODEC] = "mediacodec", // Android};
查看状态或者指定使用某种解码器
ffmpeg -hwaccels
hwcontext 核心接口
创建初始化av_hwdevice_ctx_create
- av_hwdevice_ctx_alloc
- device_ctx->internal->hw_type->device_create 绑定到具体硬件的指针函数上
- av_hwdevice_ctx_init
创建初始化AVHWFramesContext
描述硬件frame的一个pool,包括大小,格式,AVHWDeviceContext,长/宽等内容
- av_hwframe_ctx_alloc
- av_hwframe_ctx_init
- hwframe_ctx_free
AVFrame操作
- av_hwframe_transfer_data //gpu frame和memory freme之间的拷贝
- av_hwframe_get_buffer //分配AVFrame空间
硬件解码流程
av_register_all && av_format_init_next && 初始化outdev_list/indev_list (已经被废弃了)
avdevice_register_all && avpriv_register_device && av_format_init_next && 初始化outdev_list/indev_list;
void av_register_all(void){ ff_thread_once(&av_format_next_init, av_format_init_next); //保证多线程下只执行一次,屏蔽不同平台的多线程代码差异,不同的平台下映射到不同线程库中的pthread_once函数}#define PTHREAD_ONCE_INIT {0, _FMUTEX_INITIALIZER}#define AV_ONCE_INIT PTHREAD_ONCE_INITstatic AVOnce av_format_next_init = AV_ONCE_INIT;//实际上av_format_next_init就是{0}static void av_format_init_next(void){ //输入输出结构封装成链表,加锁处理 AVOutputFormat *prevout = NULL, *out; AVInputFormat *previn = NULL, *in; ff_mutex_lock(&avpriv_register_devices_mutex); for (int i = 0; (out = (AVOutputFormat*)muxer_list[i]); i++) { if (prevout) prevout->next = out; prevout = out; } if (outdev_list) { for (int i = 0; (out = (AVOutputFormat*)outdev_list[i]); i++) { if (prevout) prevout->next = out; prevout = out; } } for (int i = 0; (in = (AVInputFormat*)demuxer_list[i]); i++) { if (previn) previn->next = in; previn = in; } if (indev_list) { for (int i = 0; (in = (AVInputFormat*)indev_list[i]); i++) { if (previn) previn->next = in; previn = in; } } ff_mutex_unlock(&avpriv_register_devices_mutex);}//h264的AVOutputFormat结构AVOutputFormat ff_h264_muxer = { .name = "h264", .long_name = NULL_IF_CONFIG_SMALL("raw H.264 video"), .extensions = "h264,264", .audio_codec = AV_CODEC_ID_NONE, .video_codec = AV_CODEC_ID_H264, .write_header = force_one_stream, .write_packet = ff_raw_write_packet, .check_bitstream = h264_check_bitstream, .flags = AVFMT_NOTIMESTAMPS,};
如何关联硬件解码器
通过hw_device_setup_for_encode/hw_device_setup_for_decode进行设置,和4.x之前差异较大。
查找hw_devices里面的解码器。