SpringBoot实战电商项目mall(30k+star)地址:https://github.com/macrozheng/mall

摘要

记得刚接触Elasticsearch的时候,没找啥资料,直接看了遍Elasticsearch的中文官方文档,中文文档很久没更新了,一直都是2.3的版本。最近又重新看了遍6.0的官方文档,由于官方文档介绍的内容比较多,每次看都很费力,所以这次整理了其中最常用部分,写下了这篇入门教程,希望对大家有所帮助。

简介

Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式的全文搜索引擎,基于restful web接口。Elasticsearch是用Java语言开发的,基于Apache协议的开源项目,是目前最受欢迎的企业搜索引擎。Elasticsearch广泛运用于云计算中,能够达到实时搜索,具有稳定,可靠,快速的特点。

安装

Windows下的安装

Elasticsearch

  • 下载Elasticsearch 6.2.2的zip包,并解压到指定目录,下载地址:https://www.elastic.co/cn/dow...

  • 安装中文分词插件,在elasticsearch-6.2.2bin目录下执行以下命令;
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.2/elasticsearch-analysis-ik-6.2.2.zip

  • 运行bin目录下的elasticsearch.bat启动Elasticsearch;

Kibana

  • 下载Kibana,作为访问Elasticsearch的客户端,请下载6.2.2版本的zip包,并解压到指定目录,下载地址:https://artifacts.elastic.co/...

  • 运行bin目录下的kibana.bat,启动Kibana的用户界面

  • 访问http://localhost:5601 即可打开Kibana的用户界面:

Linux下的安装

Elasticsearch

  • 下载elasticsearch 6.4.0的docker镜像;
docker pull elasticsearch:6.4.0
  • 修改虚拟内存区域大小,否则会因为过小而无法启动;
sysctl -w vm.max_map_count=262144
  • 使用docker命令启动;
docker run -p 9200:9200 -p 9300:9300 --name elasticsearch \-e "discovery.type=single-node" \-e "cluster.name=elasticsearch" \-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \-d elasticsearch:6.4.0
  • 启动时会发现/usr/share/elasticsearch/data目录没有访问权限,只需要修改该目录的权限,再重新启动即可;
chmod 777 /mydata/elasticsearch/data/
  • 安装中文分词器IKAnalyzer,并重新启动;
docker exec -it elasticsearch /bin/bash#此命令需要在容器中运行elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zipdocker restart elasticsearch
  • 访问会返回版本信息:http://192.168.3.101:9200/

Kibina

  • 下载kibana 6.4.0的docker镜像;
docker pull kibana:6.4.0
  • 使用docker命令启动;
docker run --name kibana -p 5601:5601 \--link elasticsearch:es \-e "elasticsearch.hosts=http://es:9200" \-d kibana:6.4.0
  • 访问地址进行测试:http://192.168.3.101:5601

相关概念

  • Near Realtime(近实时):Elasticsearch是一个近乎实时的搜索平台,这意味着从索引文档到可搜索文档之间只有一个轻微的延迟(通常是一秒钟)。
  • Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。
  • Node(节点):节点是指属于集群的单个Elasticsearch实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为elasticsearch的群集。
  • Index(索引):索引是一些具有相似特征的文档集合,类似于MySql中数据库的概念。
  • Type(类型):类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似MySql中表的概念。注意:在Elasticsearch 6.0.0及更高的版本中,一个索引只能包含一个类型。
  • Document(文档):文档是可被索引的基本信息单位,以JSON形式表示,类似于MySql中行记录的概念。
  • Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。
  • Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。

集群状态查看

  • 查看集群健康状态;
GET /_cat/health?v
epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent1585552862 15:21:02  elasticsearch yellow          1         1     27  27    0    0       25             0                  -                 51.9%
  • 查看节点状态;
GET /_cat/nodes?v
ip        heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name127.0.0.1           23          94  28                          mdi       *      KFFjkpV
  • 查看所有索引信息;
GET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.sizegreen  open   pms      xlU0BjEoTrujDgeL6ENMPw   1   0         41            0     30.5kb         30.5kbgreen  open   .kibana  ljKQtJdwT9CnLrxbujdfWg   1   0          2            1     10.7kb         10.7kb

索引操作

  • 创建索引并查看;
PUT /customerGET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.sizeyellow open   customer 9uPjf94gSq-SJS6eOuJrHQ   5   1          0            0       460b           460bgreen  open   pms      xlU0BjEoTrujDgeL6ENMPw   1   0         41            0     30.5kb         30.5kbgreen  open   .kibana  ljKQtJdwT9CnLrxbujdfWg   1   0          2            1     10.7kb         10.7kb
  • 删除索引并查看;
DELETE /customerGET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.sizegreen  open   pms      xlU0BjEoTrujDgeL6ENMPw   1   0         41            0     30.5kb         30.5kbgreen  open   .kibana  ljKQtJdwT9CnLrxbujdfWg   1   0          2            1     10.7kb         10.7kb

类型操作

  • 查看文档的类型;
GET /bank/account/_mapping
{  "bank": {    "mappings": {      "account": {        "properties": {          "account_number": {            "type": "long"          },          "address": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          },          "age": {            "type": "long"          },          "balance": {            "type": "long"          },          "city": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          },          "email": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          },          "employer": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          },          "firstname": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          },          "gender": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          },          "lastname": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          },          "state": {            "type": "text",            "fields": {              "keyword": {                "type": "keyword",                "ignore_above": 256              }            }          }        }      }    }  }}

文档操作

  • 在索引中添加文档;
PUT /customer/doc/1{  "name": "John Doe"}
{  "_index": "customer",  "_type": "doc",  "_id": "1",  "_version": 1,  "result": "created",  "_shards": {    "total": 2,    "successful": 1,    "failed": 0  },  "_seq_no": 3,  "_primary_term": 1}
  • 查看索引中的文档;
GET /customer/doc/1
{  "_index": "customer",  "_type": "doc",  "_id": "1",  "_version": 2,  "found": true,  "_source": {    "name": "John Doe"  }}
  • 修改索引中的文档:
POST /customer/doc/1/_update{  "doc": { "name": "Jane Doe" }}
{  "_index": "customer",  "_type": "doc",  "_id": "1",  "_version": 2,  "result": "updated",  "_shards": {    "total": 2,    "successful": 1,    "failed": 0  },  "_seq_no": 4,  "_primary_term": 1}
  • 删除索引中的文档;
DELETE /customer/doc/1
{  "_index": "customer",  "_type": "doc",  "_id": "1",  "_version": 3,  "result": "deleted",  "_shards": {    "total": 2,    "successful": 1,    "failed": 0  },  "_seq_no": 2,  "_primary_term": 1}
  • 对索引中的文档执行批量操作;
POST /customer/doc/_bulk{"index":{"_id":"1"}}{"name": "John Doe" }{"index":{"_id":"2"}}{"name": "Jane Doe" }
{  "took": 45,  "errors": false,  "items": [    {      "index": {        "_index": "customer",        "_type": "doc",        "_id": "1",        "_version": 3,        "result": "updated",        "_shards": {          "total": 2,          "successful": 1,          "failed": 0        },        "_seq_no": 5,        "_primary_term": 1,        "status": 200      }    },    {      "index": {        "_index": "customer",        "_type": "doc",        "_id": "2",        "_version": 1,        "result": "created",        "_shards": {          "total": 2,          "successful": 1,          "failed": 0        },        "_seq_no": 0,        "_primary_term": 1,        "status": 201      }    }  ]}

数据搜索

查询表达式(Query DSL)是一种非常灵活又富有表现力的查询语言,Elasticsearch使用它可以以简单的JSON接口来实现丰富的搜索功能,下面的搜索操作都将使用它。

数据准备

  • 首先我们需要导入一定量的数据用于搜索,使用的是银行账户表的例子,数据结构如下:
{    "account_number": 0,    "balance": 16623,    "firstname": "Bradshaw",    "lastname": "Mckenzie",    "age": 29,    "gender": "F",    "address": "244 Columbus Place",    "employer": "Euron",    "email": "bradshawmckenzie@euron.com",    "city": "Hobucken",    "state": "CO"}
  • 我们先复制下需要导入的数据,数据地址: https://github.com/macrozheng...
  • 然后直接使用批量操作来导入数据,注意本文所有操作都在Kibana的Dev Tools中进行;
POST /bank/account/_bulk{  "index": {    "_id": "1"  }}{  "account_number": 1,  "balance": 39225,  "firstname": "Amber",  "lastname": "Duke",  "age": 32,  "gender": "M",  "address": "880 Holmes Lane",  "employer": "Pyrami",  "email": "amberduke@pyrami.com",  "city": "Brogan",  "state": "IL"}......省略若干条数据

  • 导入完成后查看索引信息,可以发现bank索引中已经创建了1000条文档。
GET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.sizeyellow open   bank     HFjxDLNLRA-NATPKUQgjBw   5   1       1000            0    474.6kb        474.6kb

搜索入门

  • 最简单的搜索,使用match_all来表示,例如搜索全部;
GET /bank/_search{  "query": { "match_all": {} }}

  • 分页搜索,from表示偏移量,从0开始,size表示每页显示的数量;
GET /bank/_search{  "query": { "match_all": {} },  "from": 0,  "size": 10}

  • 搜索排序,使用sort表示,例如按balance字段降序排列;
GET /bank/_search{  "query": { "match_all": {} },  "sort": { "balance": { "order": "desc" } }}

  • 搜索并返回指定字段内容,使用_source表示,例如只返回account_numberbalance两个字段内容:
GET /bank/_search{  "query": { "match_all": {} },  "_source": ["account_number", "balance"]}

条件搜索

  • 条件搜索,使用match表示匹配条件,例如搜索出account_number20的文档:
GET /bank/_search{  "query": {    "match": {      "account_number": 20    }  }}

  • 文本类型字段的条件搜索,例如搜索address字段中包含mill的文档,对比上一条搜索可以发现,对于数值类型match操作使用的是精确匹配,对于文本类型使用的是模糊匹配;
GET /bank/_search{  "query": {    "match": {      "address": "mill"    }  },  "_source": [    "address",    "account_number"  ]}

  • 短语匹配搜索,使用match_phrase表示,例如搜索address字段中同时包含milllane的文档:
GET /bank/_search{  "query": {    "match_phrase": {      "address": "mill lane"    }  }}

组合搜索

  • 组合搜索,使用bool来进行组合,must表示同时满足,例如搜索address字段中同时包含milllane的文档;
GET /bank/_search{  "query": {    "bool": {      "must": [        { "match": { "address": "mill" } },        { "match": { "address": "lane" } }      ]    }  }}

  • 组合搜索,should表示满足其中任意一个,搜索address字段中包含mill或者lane的文档;
GET /bank/_search{  "query": {    "bool": {      "should": [        { "match": { "address": "mill" } },        { "match": { "address": "lane" } }      ]    }  }}

  • 组合搜索,must_not表示同时不满足,例如搜索address字段中不包含mill且不包含lane的文档;
GET /bank/_search{  "query": {    "bool": {      "must_not": [        { "match": { "address": "mill" } },        { "match": { "address": "lane" } }      ]    }  }}

  • 组合搜索,组合mustmust_not,例如搜索age字段等于40state字段不包含ID的文档;
GET /bank/_search{  "query": {    "bool": {      "must": [        { "match": { "age": "40" } }      ],      "must_not": [        { "match": { "state": "ID" } }      ]    }  }}

过滤搜索

  • 搜索过滤,使用filter来表示,例如过滤出balance字段在20000~30000的文档;
GET /bank/_search{  "query": {    "bool": {      "must": { "match_all": {} },      "filter": {        "range": {          "balance": {            "gte": 20000,            "lte": 30000          }        }      }    }  }}

搜索聚合

  • 对搜索结果进行聚合,使用aggs来表示,类似于MySql中的group by,例如对state字段进行聚合,统计出相同state的文档数量;
GET /bank/_search{  "size": 0,  "aggs": {    "group_by_state": {      "terms": {        "field": "state.keyword"      }    }  }}

  • 嵌套聚合,例如对state字段进行聚合,统计出相同state的文档数量,再统计出balance的平均值;
GET /bank/_search{  "size": 0,  "aggs": {    "group_by_state": {      "terms": {        "field": "state.keyword"      },      "aggs": {        "average_balance": {          "avg": {            "field": "balance"          }        }      }    }  }}

  • 对聚合搜索的结果进行排序,例如按balance的平均值降序排列;
GET /bank/_search{  "size": 0,  "aggs": {    "group_by_state": {      "terms": {        "field": "state.keyword",        "order": {          "average_balance": "desc"        }      },      "aggs": {        "average_balance": {          "avg": {            "field": "balance"          }        }      }    }  }}

  • 按字段值的范围进行分段聚合,例如分段范围为age字段的[20,30] [30,40] [40,50],之后按gender统计文档个数和balance的平均值;
GET /bank/_search{  "size": 0,  "aggs": {    "group_by_age": {      "range": {        "field": "age",        "ranges": [          {            "from": 20,            "to": 30          },          {            "from": 30,            "to": 40          },          {            "from": 40,            "to": 50          }        ]      },      "aggs": {        "group_by_gender": {          "terms": {            "field": "gender.keyword"          },          "aggs": {            "average_balance": {              "avg": {                "field": "balance"              }            }          }        }      }    }  }}

参考资料

https://www.elastic.co/guide/...

公众号

mall项目全套学习教程连载中,关注公众号第一时间获取。