自适应参数化ReLU是一种动态激活函数,对所有输入不是“一视同仁”,在2019年5月3日投稿至IEEE Transactions on Industrial Electronics,2020年1月24日录用,2020年2月13日在IEEE官网公布。
本文在调参记录21的基础上,将残差模块的个数,从60个增加到120个,测试深度残差网络+自适应参数化ReLU激活函数在Cifar10数据集上的效果。
自适应参数化ReLU激活函数的基本原理如下:
Keras程序:
#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Tue Apr 14 04:17:45 2020Implemented using TensorFlow 1.0.1 and Keras 2.2.1Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht,Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458,Date of Publication: 13 February 2020@author: Minghang Zhao"""from __future__ import print_functionimport kerasimport numpy as npfrom keras.datasets import cifar10from keras.layers import Dense, Conv2D, BatchNormalization, Activation, Minimumfrom keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D, Concatenate, Reshapefrom keras.regularizers import l2from keras import backend as Kfrom keras.models import Modelfrom keras import optimizersfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.callbacks import LearningRateSchedulerK.set_learning_phase(1)# The data, split between train and test sets(x_train, y_train), (x_test, y_test) = cifar10.load_data()x_train = x_train.astype('float32') / 255.x_test = x_test.astype('float32') / 255.x_test = x_test-np.mean(x_train)x_train = x_train-np.mean(x_train)print('x_train shape:', x_train.shape)print(x_train.shape[0], 'train samples')print(x_test.shape[0], 'test samples')# convert class vectors to binary class matricesy_train = keras.utils.to_categorical(y_train, 10)y_test = keras.utils.to_categorical(y_test, 10)# Schedule the learning rate, multiply 0.1 every 150 epochesdef scheduler(epoch): if epoch % 150 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.1) print("lr changed to {}".format(lr * 0.1)) return K.get_value(model.optimizer.lr)# An adaptively parametric rectifier linear unit (APReLU)def aprelu(inputs): # get the number of channels channels = inputs.get_shape().as_list()[-1] # get a zero feature map zeros_input = keras.layers.subtract([inputs, inputs]) # get a feature map with only positive features pos_input = Activation('relu')(inputs) # get a feature map with only negative features neg_input = Minimum()([inputs,zeros_input]) # define a network to obtain the scaling coefficients scales_p = GlobalAveragePooling2D()(pos_input) scales_n = GlobalAveragePooling2D()(neg_input) scales = Concatenate()([scales_n, scales_p]) scales = Dense(channels//16, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(scales) scales = Activation('relu')(scales) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(scales) scales = Activation('sigmoid')(scales) scales = Reshape((1,1,channels))(scales) # apply a paramtetric relu neg_part = keras.layers.multiply([scales, neg_input]) return keras.layers.add([pos_input, neg_part])# Residual Blockdef residual_block(incoming, nb_blocks, out_channels, downsample=False, downsample_strides=2): residual = incoming in_channels = incoming.get_shape().as_list()[-1] for i in range(nb_blocks): identity = residual if not downsample: downsample_strides = 1 residual = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(residual) residual = Activation('relu')(residual) residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(residual) residual = Activation('relu')(residual) residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = aprelu(residual) # Downsampling if downsample_strides > 1: identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity) # Zero_padding to match channels if in_channels != out_channels: zeros_identity = keras.layers.subtract([identity, identity]) identity = keras.layers.concatenate([identity, zeros_identity]) in_channels = out_channels residual = keras.layers.add([residual, identity]) return residual# define and train a modelinputs = Input(shape=(32, 32, 3))net = Conv2D(16, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs)net = residual_block(net, 40, 32, downsample=False)net = residual_block(net, 1, 32, downsample=True)net = residual_block(net, 39, 32, downsample=False)net = residual_block(net, 1, 64, downsample=True)net = residual_block(net, 39, 64, downsample=False)net = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(net)net = Activation('relu')(net)net = GlobalAveragePooling2D()(net)outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net)model = Model(inputs=inputs, outputs=outputs)sgd = optimizers.SGD(lr=0.1, decay=0., momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])# data augmentationdatagen = ImageDataGenerator( # randomly rotate images in the range (deg 0 to 180) rotation_range=30, # Range for random zoom zoom_range = 0.2, # shear angle in counter-clockwise direction in degrees shear_range = 30, # randomly flip images horizontal_flip=True, # randomly shift images horizontally width_shift_range=0.125, # randomly shift images vertically height_shift_range=0.125)reduce_lr = LearningRateScheduler(scheduler)# fit the model on the batches generated by datagen.flow().model.fit_generator(datagen.flow(x_train, y_train, batch_size=100), validation_data=(x_test, y_test), epochs=500, verbose=1, callbacks=[reduce_lr], workers=4)# get resultsK.set_learning_phase(0)DRSN_train_score = model.evaluate(x_train, y_train, batch_size=100, verbose=0)print('Train loss:', DRSN_train_score[0])print('Train accuracy:', DRSN_train_score[1])DRSN_test_score = model.evaluate(x_test, y_test, batch_size=100, verbose=0)print('Test loss:', DRSN_test_score[0])print('Test accuracy:', DRSN_test_score[1])
实验结果:
Using TensorFlow backend.x_train shape: (50000, 32, 32, 3)50000 train samples10000 test samplesEpoch 1/500318s 637ms/step - loss: 6.0165 - acc: 0.3791 - val_loss: 5.2157 - val_acc: 0.5307Epoch 2/500221s 443ms/step - loss: 4.8584 - acc: 0.5361 - val_loss: 4.2761 - val_acc: 0.6383Epoch 3/500221s 442ms/step - loss: 4.0487 - acc: 0.6159 - val_loss: 3.5837 - val_acc: 0.6913Epoch 4/500221s 442ms/step - loss: 3.4323 - acc: 0.6610 - val_loss: 3.0189 - val_acc: 0.7396Epoch 5/500221s 442ms/step - loss: 2.9384 - acc: 0.6943 - val_loss: 2.5795 - val_acc: 0.7697Epoch 6/500221s 442ms/step - loss: 2.5470 - acc: 0.7181 - val_loss: 2.2296 - val_acc: 0.7848Epoch 7/500221s 442ms/step - loss: 2.2227 - acc: 0.7400 - val_loss: 1.9631 - val_acc: 0.7931Epoch 8/500222s 444ms/step - loss: 1.9632 - acc: 0.7546 - val_loss: 1.7318 - val_acc: 0.8098Epoch 9/500221s 443ms/step - loss: 1.7535 - acc: 0.7685 - val_loss: 1.5313 - val_acc: 0.8197Epoch 10/500221s 442ms/step - loss: 1.5759 - acc: 0.7798 - val_loss: 1.4001 - val_acc: 0.8214Epoch 11/500221s 442ms/step - loss: 1.4432 - acc: 0.7859 - val_loss: 1.2776 - val_acc: 0.8309Epoch 12/500221s 442ms/step - loss: 1.3201 - acc: 0.7977 - val_loss: 1.1707 - val_acc: 0.8349Epoch 13/500222s 443ms/step - loss: 1.2295 - acc: 0.8028 - val_loss: 1.0760 - val_acc: 0.8454Epoch 14/500222s 443ms/step - loss: 1.1552 - acc: 0.8069 - val_loss: 1.0225 - val_acc: 0.8432Epoch 15/500221s 441ms/step - loss: 1.0964 - acc: 0.8119 - val_loss: 0.9549 - val_acc: 0.8514Epoch 16/500221s 442ms/step - loss: 1.0386 - acc: 0.8174 - val_loss: 0.9072 - val_acc: 0.8614Epoch 17/500221s 442ms/step - loss: 0.9979 - acc: 0.8204 - val_loss: 0.8765 - val_acc: 0.8566Epoch 18/500221s 441ms/step - loss: 0.9611 - acc: 0.8260 - val_loss: 0.8820 - val_acc: 0.8502Epoch 19/500220s 441ms/step - loss: 0.9351 - acc: 0.8290 - val_loss: 0.8319 - val_acc: 0.8601Epoch 20/500221s 441ms/step - loss: 0.9130 - acc: 0.8295 - val_loss: 0.8077 - val_acc: 0.8643Epoch 21/500221s 441ms/step - loss: 0.8837 - acc: 0.8347 - val_loss: 0.7924 - val_acc: 0.8683Epoch 22/500221s 441ms/step - loss: 0.8741 - acc: 0.8349 - val_loss: 0.7675 - val_acc: 0.8747Epoch 23/500221s 442ms/step - loss: 0.8536 - acc: 0.8403 - val_loss: 0.7988 - val_acc: 0.8599Epoch 24/500221s 441ms/step - loss: 0.8457 - acc: 0.8395 - val_loss: 0.7619 - val_acc: 0.8698Epoch 25/500221s 441ms/step - loss: 0.8354 - acc: 0.8422 - val_loss: 0.7466 - val_acc: 0.8708Epoch 26/500221s 441ms/step - loss: 0.8210 - acc: 0.8449 - val_loss: 0.7481 - val_acc: 0.8714Epoch 27/500220s 441ms/step - loss: 0.8155 - acc: 0.8473 - val_loss: 0.7636 - val_acc: 0.8669Epoch 28/500220s 441ms/step - loss: 0.8154 - acc: 0.8470 - val_loss: 0.7301 - val_acc: 0.8785Epoch 29/500220s 441ms/step - loss: 0.7967 - acc: 0.8537 - val_loss: 0.7206 - val_acc: 0.8811Epoch 30/500220s 441ms/step - loss: 0.7961 - acc: 0.8510 - val_loss: 0.7203 - val_acc: 0.8814Epoch 31/500221s 441ms/step - loss: 0.7932 - acc: 0.8534 - val_loss: 0.7010 - val_acc: 0.8835Epoch 32/500220s 441ms/step - loss: 0.7783 - acc: 0.8585 - val_loss: 0.7239 - val_acc: 0.8797Epoch 33/500221s 441ms/step - loss: 0.7744 - acc: 0.8577 - val_loss: 0.7140 - val_acc: 0.8795Epoch 34/500221s 442ms/step - loss: 0.7753 - acc: 0.8591 - val_loss: 0.7185 - val_acc: 0.8811Epoch 35/500221s 441ms/step - loss: 0.7737 - acc: 0.8575 - val_loss: 0.7251 - val_acc: 0.8752Epoch 36/500220s 441ms/step - loss: 0.7666 - acc: 0.8632 - val_loss: 0.7151 - val_acc: 0.8814Epoch 37/500221s 441ms/step - loss: 0.7746 - acc: 0.8593 - val_loss: 0.7119 - val_acc: 0.8792Epoch 38/500220s 441ms/step - loss: 0.7644 - acc: 0.8631 - val_loss: 0.7091 - val_acc: 0.8819Epoch 39/500221s 442ms/step - loss: 0.7620 - acc: 0.8639 - val_loss: 0.7190 - val_acc: 0.8809Epoch 40/500221s 441ms/step - loss: 0.7507 - acc: 0.8660 - val_loss: 0.7065 - val_acc: 0.8840Epoch 41/500221s 441ms/step - loss: 0.7550 - acc: 0.8658 - val_loss: 0.6998 - val_acc: 0.8858Epoch 42/500220s 441ms/step - loss: 0.7546 - acc: 0.8666 - val_loss: 0.7195 - val_acc: 0.8803Epoch 43/500221s 441ms/step - loss: 0.7514 - acc: 0.8680 - val_loss: 0.6949 - val_acc: 0.8895Epoch 44/500220s 441ms/step - loss: 0.7511 - acc: 0.8661 - val_loss: 0.7011 - val_acc: 0.8872Epoch 45/500221s 441ms/step - loss: 0.7431 - acc: 0.8688 - val_loss: 0.7057 - val_acc: 0.8848Epoch 46/500221s 441ms/step - loss: 0.7464 - acc: 0.8683 - val_loss: 0.7014 - val_acc: 0.8827Epoch 47/500220s 441ms/step - loss: 0.7487 - acc: 0.8678 - val_loss: 0.7002 - val_acc: 0.8859Epoch 48/500220s 441ms/step - loss: 0.7453 - acc: 0.8701 - val_loss: 0.6912 - val_acc: 0.8891Epoch 49/500220s 441ms/step - loss: 0.7431 - acc: 0.8694 - val_loss: 0.6798 - val_acc: 0.8932Epoch 50/500221s 441ms/step - loss: 0.7409 - acc: 0.8726 - val_loss: 0.6813 - val_acc: 0.8949Epoch 51/500220s 440ms/step - loss: 0.7370 - acc: 0.8732 - val_loss: 0.7049 - val_acc: 0.8886Epoch 52/500220s 441ms/step - loss: 0.7315 - acc: 0.8748 - val_loss: 0.6921 - val_acc: 0.8881Epoch 53/500220s 441ms/step - loss: 0.7374 - acc: 0.8728 - val_loss: 0.6728 - val_acc: 0.8990Epoch 54/500220s 441ms/step - loss: 0.7326 - acc: 0.8749 - val_loss: 0.6982 - val_acc: 0.8861Epoch 55/500221s 441ms/step - loss: 0.7353 - acc: 0.8723 - val_loss: 0.6776 - val_acc: 0.8918Epoch 56/500220s 441ms/step - loss: 0.7300 - acc: 0.8752 - val_loss: 0.6822 - val_acc: 0.8923Epoch 57/500221s 441ms/step - loss: 0.7321 - acc: 0.8756 - val_loss: 0.6854 - val_acc: 0.8963Epoch 58/500221s 441ms/step - loss: 0.7341 - acc: 0.8742 - val_loss: 0.7065 - val_acc: 0.8861Epoch 59/500220s 441ms/step - loss: 0.7334 - acc: 0.8749 - val_loss: 0.6815 - val_acc: 0.8960Epoch 60/500221s 443ms/step - loss: 0.7250 - acc: 0.8774 - val_loss: 0.6798 - val_acc: 0.8977Epoch 61/500222s 444ms/step - loss: 0.7309 - acc: 0.8759 - val_loss: 0.6892 - val_acc: 0.8964Epoch 62/500225s 451ms/step - loss: 0.7249 - acc: 0.8784 - val_loss: 0.6967 - val_acc: 0.8923Epoch 63/500226s 451ms/step - loss: 0.7291 - acc: 0.8770 - val_loss: 0.7028 - val_acc: 0.8907Epoch 64/500225s 451ms/step - loss: 0.7234 - acc: 0.8817 - val_loss: 0.6920 - val_acc: 0.8903Epoch 65/500225s 451ms/step - loss: 0.7279 - acc: 0.8787 - val_loss: 0.6723 - val_acc: 0.9003Epoch 66/500225s 451ms/step - loss: 0.7229 - acc: 0.8801 - val_loss: 0.6937 - val_acc: 0.8939Epoch 67/500225s 450ms/step - loss: 0.7207 - acc: 0.8795 - val_loss: 0.7028 - val_acc: 0.8928Epoch 68/500226s 451ms/step - loss: 0.7226 - acc: 0.8804 - val_loss: 0.6830 - val_acc: 0.8942Epoch 69/500225s 451ms/step - loss: 0.7210 - acc: 0.8801 - val_loss: 0.6928 - val_acc: 0.8941Epoch 70/500225s 451ms/step - loss: 0.7197 - acc: 0.8817 - val_loss: 0.6946 - val_acc: 0.8912Epoch 71/500225s 450ms/step - loss: 0.7228 - acc: 0.8799 - val_loss: 0.6721 - val_acc: 0.9010Epoch 72/500226s 451ms/step - loss: 0.7195 - acc: 0.8836 - val_loss: 0.6764 - val_acc: 0.9032Epoch 73/500225s 450ms/step - loss: 0.7210 - acc: 0.8810 - val_loss: 0.6776 - val_acc: 0.8979Epoch 74/500225s 451ms/step - loss: 0.7174 - acc: 0.8819 - val_loss: 0.6784 - val_acc: 0.8965Epoch 75/500225s 451ms/step - loss: 0.7144 - acc: 0.8838 - val_loss: 0.6799 - val_acc: 0.8988Epoch 76/500225s 451ms/step - loss: 0.7188 - acc: 0.8814 - val_loss: 0.6884 - val_acc: 0.8945Epoch 77/500225s 451ms/step - loss: 0.7188 - acc: 0.8833 - val_loss: 0.7054 - val_acc: 0.8915Epoch 78/500225s 451ms/step - loss: 0.7147 - acc: 0.8835 - val_loss: 0.6905 - val_acc: 0.8957Epoch 79/500225s 451ms/step - loss: 0.7168 - acc: 0.8830 - val_loss: 0.6794 - val_acc: 0.9000Epoch 80/500225s 451ms/step - loss: 0.7150 - acc: 0.8829 - val_loss: 0.6843 - val_acc: 0.8957Epoch 81/500225s 451ms/step - loss: 0.7102 - acc: 0.8846 - val_loss: 0.6813 - val_acc: 0.8954Epoch 82/500226s 451ms/step - loss: 0.7093 - acc: 0.8844 - val_loss: 0.6944 - val_acc: 0.8913Epoch 83/500225s 451ms/step - loss: 0.7105 - acc: 0.8840 - val_loss: 0.6791 - val_acc: 0.8964Epoch 84/500225s 451ms/step - loss: 0.7068 - acc: 0.8872 - val_loss: 0.6921 - val_acc: 0.8905Epoch 85/500225s 451ms/step - loss: 0.7118 - acc: 0.8866 - val_loss: 0.6970 - val_acc: 0.8921Epoch 86/500225s 451ms/step - loss: 0.7108 - acc: 0.8842 - val_loss: 0.6891 - val_acc: 0.8955Epoch 87/500225s 451ms/step - loss: 0.7105 - acc: 0.8832 - val_loss: 0.6872 - val_acc: 0.8949Epoch 88/500225s 451ms/step - loss: 0.7133 - acc: 0.8846 - val_loss: 0.6777 - val_acc: 0.8978Epoch 89/500225s 451ms/step - loss: 0.7105 - acc: 0.8853 - val_loss: 0.6784 - val_acc: 0.8953Epoch 90/500225s 451ms/step - loss: 0.7031 - acc: 0.8884 - val_loss: 0.6937 - val_acc: 0.8952Epoch 91/500225s 451ms/step - loss: 0.7002 - acc: 0.8892 - val_loss: 0.6709 - val_acc: 0.9001Epoch 92/500225s 451ms/step - loss: 0.7098 - acc: 0.8863 - val_loss: 0.6674 - val_acc: 0.9002Epoch 93/500225s 451ms/step - loss: 0.7034 - acc: 0.8882 - val_loss: 0.7211 - val_acc: 0.8831Epoch 94/500225s 450ms/step - loss: 0.7056 - acc: 0.8870 - val_loss: 0.6597 - val_acc: 0.9043Epoch 95/500225s 450ms/step - loss: 0.7070 - acc: 0.8861 - val_loss: 0.6682 - val_acc: 0.9026Epoch 96/500221s 442ms/step - loss: 0.7015 - acc: 0.8893 - val_loss: 0.6766 - val_acc: 0.9009Epoch 97/500224s 448ms/step - loss: 0.7089 - acc: 0.8855 - val_loss: 0.6844 - val_acc: 0.8970Epoch 98/500225s 450ms/step - loss: 0.7052 - acc: 0.8885 - val_loss: 0.6668 - val_acc: 0.9040Epoch 99/500225s 451ms/step - loss: 0.7072 - acc: 0.8879 - val_loss: 0.6808 - val_acc: 0.8978Epoch 100/500225s 451ms/step - loss: 0.7016 - acc: 0.8891 - val_loss: 0.6898 - val_acc: 0.8935Epoch 101/500225s 451ms/step - loss: 0.7018 - acc: 0.8888 - val_loss: 0.6803 - val_acc: 0.8980Epoch 102/500225s 451ms/step - loss: 0.7099 - acc: 0.8865 - val_loss: 0.6773 - val_acc: 0.8986Epoch 103/500225s 451ms/step - loss: 0.7075 - acc: 0.8875 - val_loss: 0.6743 - val_acc: 0.9014Epoch 104/500225s 451ms/step - loss: 0.7048 - acc: 0.8881 - val_loss: 0.6627 - val_acc: 0.9064Epoch 105/500225s 451ms/step - loss: 0.7041 - acc: 0.8890 - val_loss: 0.6741 - val_acc: 0.9032Epoch 106/500226s 451ms/step - loss: 0.7036 - acc: 0.8884 - val_loss: 0.6736 - val_acc: 0.9037Epoch 107/500225s 451ms/step - loss: 0.7043 - acc: 0.8882 - val_loss: 0.6758 - val_acc: 0.9005Epoch 108/500225s 451ms/step - loss: 0.7024 - acc: 0.8891 - val_loss: 0.6812 - val_acc: 0.8990Epoch 109/500225s 450ms/step - loss: 0.7044 - acc: 0.8872 - val_loss: 0.6736 - val_acc: 0.9016Epoch 110/500225s 451ms/step - loss: 0.6999 - acc: 0.8913 - val_loss: 0.6756 - val_acc: 0.9007Epoch 111/500226s 451ms/step - loss: 0.6951 - acc: 0.8930 - val_loss: 0.6871 - val_acc: 0.8945Epoch 112/500226s 451ms/step - loss: 0.6970 - acc: 0.8898 - val_loss: 0.6875 - val_acc: 0.8950Epoch 113/500225s 450ms/step - loss: 0.7006 - acc: 0.8902 - val_loss: 0.6711 - val_acc: 0.9032Epoch 114/500225s 451ms/step - loss: 0.7000 - acc: 0.8896 - val_loss: 0.6824 - val_acc: 0.8962Epoch 115/500225s 450ms/step - loss: 0.6969 - acc: 0.8904 - val_loss: 0.6761 - val_acc: 0.8975Epoch 116/500225s 451ms/step - loss: 0.6939 - acc: 0.8913 - val_loss: 0.6924 - val_acc: 0.8974Epoch 117/500225s 451ms/step - loss: 0.7028 - acc: 0.8895 - val_loss: 0.6773 - val_acc: 0.9014Epoch 118/500225s 450ms/step - loss: 0.6994 - acc: 0.8906 - val_loss: 0.7111 - val_acc: 0.8884Epoch 119/500225s 451ms/step - loss: 0.7059 - acc: 0.8889 - val_loss: 0.6947 - val_acc: 0.8955Epoch 120/500226s 451ms/step - loss: 0.7000 - acc: 0.8902 - val_loss: 0.6832 - val_acc: 0.8976Epoch 121/500225s 451ms/step - loss: 0.6976 - acc: 0.8911 - val_loss: 0.6770 - val_acc: 0.9027Epoch 122/500226s 451ms/step - loss: 0.6962 - acc: 0.8918 - val_loss: 0.7034 - val_acc: 0.8925Epoch 123/500225s 451ms/step - loss: 0.6908 - acc: 0.8940 - val_loss: 0.6872 - val_acc: 0.8974Epoch 124/500225s 450ms/step - loss: 0.7004 - acc: 0.8896 - val_loss: 0.6788 - val_acc: 0.8979Epoch 125/500225s 451ms/step - loss: 0.6953 - acc: 0.8924 - val_loss: 0.6973 - val_acc: 0.8933Epoch 126/500225s 451ms/step - loss: 0.6998 - acc: 0.8913 - val_loss: 0.6845 - val_acc: 0.8960Epoch 127/500225s 451ms/step - loss: 0.7004 - acc: 0.8908 - val_loss: 0.6787 - val_acc: 0.9009Epoch 128/500225s 451ms/step - loss: 0.7020 - acc: 0.8898 - val_loss: 0.6899 - val_acc: 0.8970Epoch 129/500225s 451ms/step - loss: 0.6948 - acc: 0.8928 - val_loss: 0.6748 - val_acc: 0.9026Epoch 130/500221s 443ms/step - loss: 0.6958 - acc: 0.8922 - val_loss: 0.6656 - val_acc: 0.9032Epoch 131/500220s 440ms/step - loss: 0.6950 - acc: 0.8929 - val_loss: 0.7022 - val_acc: 0.8930Epoch 132/500220s 441ms/step - loss: 0.6973 - acc: 0.8918 - val_loss: 0.6895 - val_acc: 0.8919Epoch 133/500220s 441ms/step - loss: 0.6927 - acc: 0.8932 - val_loss: 0.6894 - val_acc: 0.8936Epoch 134/500220s 441ms/step - loss: 0.6966 - acc: 0.8910 - val_loss: 0.6820 - val_acc: 0.8989Epoch 135/500220s 441ms/step - loss: 0.7001 - acc: 0.8912 - val_loss: 0.6699 - val_acc: 0.9020Epoch 136/500221s 441ms/step - loss: 0.6937 - acc: 0.8935 - val_loss: 0.6767 - val_acc: 0.8963Epoch 137/500221s 442ms/step - loss: 0.6915 - acc: 0.8933 - val_loss: 0.6711 - val_acc: 0.9046Epoch 138/500221s 441ms/step - loss: 0.6897 - acc: 0.8931 - val_loss: 0.6808 - val_acc: 0.8977Epoch 139/500220s 440ms/step - loss: 0.6931 - acc: 0.8921 - val_loss: 0.6911 - val_acc: 0.8960Epoch 140/500221s 441ms/step - loss: 0.6956 - acc: 0.8927 - val_loss: 0.6699 - val_acc: 0.9041Epoch 141/500220s 441ms/step - loss: 0.6909 - acc: 0.8939 - val_loss: 0.6755 - val_acc: 0.8995Epoch 142/500221s 441ms/step - loss: 0.6919 - acc: 0.8943 - val_loss: 0.6701 - val_acc: 0.9018Epoch 143/500221s 442ms/step - loss: 0.6932 - acc: 0.8930 - val_loss: 0.6764 - val_acc: 0.9030Epoch 144/500221s 441ms/step - loss: 0.6964 - acc: 0.8930 - val_loss: 0.6952 - val_acc: 0.8951Epoch 145/500220s 441ms/step - loss: 0.6910 - acc: 0.8926 - val_loss: 0.6635 - val_acc: 0.9064Epoch 146/500220s 441ms/step - loss: 0.6973 - acc: 0.8925 - val_loss: 0.6861 - val_acc: 0.8976Epoch 147/500220s 440ms/step - loss: 0.6910 - acc: 0.8927 - val_loss: 0.6739 - val_acc: 0.9041Epoch 148/500220s 441ms/step - loss: 0.6919 - acc: 0.8936 - val_loss: 0.6705 - val_acc: 0.9049Epoch 149/500220s 441ms/step - loss: 0.6925 - acc: 0.8936 - val_loss: 0.6694 - val_acc: 0.9025Epoch 150/500220s 441ms/step - loss: 0.6944 - acc: 0.8928 - val_loss: 0.6793 - val_acc: 0.8986Epoch 151/500lr changed to 0.010000000149011612220s 441ms/step - loss: 0.5821 - acc: 0.9317 - val_loss: 0.5776 - val_acc: 0.9323Epoch 152/500220s 441ms/step - loss: 0.5235 - acc: 0.9495 - val_loss: 0.5587 - val_acc: 0.9370Epoch 153/500220s 441ms/step - loss: 0.5024 - acc: 0.9543 - val_loss: 0.5500 - val_acc: 0.9381Epoch 154/500221s 441ms/step - loss: 0.4852 - acc: 0.9583 - val_loss: 0.5434 - val_acc: 0.9393Epoch 155/500220s 440ms/step - loss: 0.4739 - acc: 0.9607 - val_loss: 0.5420 - val_acc: 0.9374Epoch 156/500220s 440ms/step - loss: 0.4595 - acc: 0.9631 - val_loss: 0.5295 - val_acc: 0.9397Epoch 157/500221s 441ms/step - loss: 0.4497 - acc: 0.9647 - val_loss: 0.5211 - val_acc: 0.9406Epoch 158/500220s 441ms/step - loss: 0.4421 - acc: 0.9653 - val_loss: 0.5143 - val_acc: 0.9411Epoch 159/500221s 441ms/step - loss: 0.4317 - acc: 0.9660 - val_loss: 0.5100 - val_acc: 0.9416Epoch 160/500221s 441ms/step - loss: 0.4200 - acc: 0.9692 - val_loss: 0.5001 - val_acc: 0.9459Epoch 161/500221s 441ms/step - loss: 0.4136 - acc: 0.9686 - val_loss: 0.4992 - val_acc: 0.9447Epoch 162/500220s 440ms/step - loss: 0.4050 - acc: 0.9708 - val_loss: 0.4958 - val_acc: 0.9420Epoch 163/500220s 441ms/step - loss: 0.4000 - acc: 0.9709 - val_loss: 0.4927 - val_acc: 0.9432Epoch 164/500220s 441ms/step - loss: 0.3903 - acc: 0.9721 - val_loss: 0.4920 - val_acc: 0.9431Epoch 165/500220s 441ms/step - loss: 0.3828 - acc: 0.9730 - val_loss: 0.4873 - val_acc: 0.9426Epoch 166/500220s 441ms/step - loss: 0.3785 - acc: 0.9733 - val_loss: 0.4890 - val_acc: 0.9394Epoch 167/500220s 441ms/step - loss: 0.3722 - acc: 0.9735 - val_loss: 0.4821 - val_acc: 0.9408Epoch 168/500221s 441ms/step - loss: 0.3642 - acc: 0.9755 - val_loss: 0.4671 - val_acc: 0.9428Epoch 169/500220s 441ms/step - loss: 0.3602 - acc: 0.9751 - val_loss: 0.4627 - val_acc: 0.9444Epoch 170/500220s 441ms/step - loss: 0.3544 - acc: 0.9756 - val_loss: 0.4749 - val_acc: 0.9396Epoch 171/500221s 441ms/step - loss: 0.3498 - acc: 0.9758 - val_loss: 0.4694 - val_acc: 0.9420Epoch 172/500221s 442ms/step - loss: 0.3465 - acc: 0.9761 - val_loss: 0.4702 - val_acc: 0.9391Epoch 173/500220s 441ms/step - loss: 0.3428 - acc: 0.9761 - val_loss: 0.4564 - val_acc: 0.9429Epoch 174/500224s 447ms/step - loss: 0.3382 - acc: 0.9763 - val_loss: 0.4583 - val_acc: 0.9406Epoch 175/500221s 442ms/step - loss: 0.3277 - acc: 0.9789 - val_loss: 0.4522 - val_acc: 0.9418Epoch 176/500224s 448ms/step - loss: 0.3287 - acc: 0.9769 - val_loss: 0.4466 - val_acc: 0.9420Epoch 177/500225s 450ms/step - loss: 0.3249 - acc: 0.9766 - val_loss: 0.4433 - val_acc: 0.9435Epoch 178/500225s 450ms/step - loss: 0.3182 - acc: 0.9785 - val_loss: 0.4391 - val_acc: 0.9420Epoch 179/500223s 447ms/step - loss: 0.3148 - acc: 0.9781 - val_loss: 0.4420 - val_acc: 0.9387Epoch 180/500221s 442ms/step - loss: 0.3119 - acc: 0.9781 - val_loss: 0.4455 - val_acc: 0.9399Epoch 181/500222s 443ms/step - loss: 0.3051 - acc: 0.9795 - val_loss: 0.4441 - val_acc: 0.9388Epoch 182/500225s 450ms/step - loss: 0.3056 - acc: 0.9792 - val_loss: 0.4391 - val_acc: 0.9390Epoch 183/500224s 448ms/step - loss: 0.3042 - acc: 0.9779 - val_loss: 0.4373 - val_acc: 0.9397Epoch 184/500221s 442ms/step - loss: 0.2972 - acc: 0.9791 - val_loss: 0.4329 - val_acc: 0.9398Epoch 185/500225s 450ms/step - loss: 0.2929 - acc: 0.9800 - val_loss: 0.4325 - val_acc: 0.9401Epoch 186/500225s 450ms/step - loss: 0.2905 - acc: 0.9807 - val_loss: 0.4300 - val_acc: 0.9392Epoch 187/500225s 450ms/step - loss: 0.2876 - acc: 0.9803 - val_loss: 0.4242 - val_acc: 0.9405Epoch 188/500225s 450ms/step - loss: 0.2842 - acc: 0.9806 - val_loss: 0.4245 - val_acc: 0.9396Epoch 189/500225s 450ms/step - loss: 0.2856 - acc: 0.9785 - val_loss: 0.4227 - val_acc: 0.9406Epoch 190/500224s 448ms/step - loss: 0.2823 - acc: 0.9794 - val_loss: 0.4057 - val_acc: 0.9425Epoch 191/500221s 442ms/step - loss: 0.2757 - acc: 0.9811 - val_loss: 0.4065 - val_acc: 0.9422Epoch 192/500221s 442ms/step - loss: 0.2775 - acc: 0.9799 - val_loss: 0.4066 - val_acc: 0.9430Epoch 193/500222s 445ms/step - loss: 0.2756 - acc: 0.9796 - val_loss: 0.4032 - val_acc: 0.9419Epoch 194/500225s 450ms/step - loss: 0.2733 - acc: 0.9795 - val_loss: 0.4105 - val_acc: 0.9391Epoch 195/500225s 451ms/step - loss: 0.2689 - acc: 0.9809 - val_loss: 0.4044 - val_acc: 0.9418Epoch 196/500225s 450ms/step - loss: 0.2678 - acc: 0.9802 - val_loss: 0.3969 - val_acc: 0.9425Epoch 197/500225s 450ms/step - loss: 0.2612 - acc: 0.9825 - val_loss: 0.3984 - val_acc: 0.9437Epoch 198/500225s 450ms/step - loss: 0.2686 - acc: 0.9783 - val_loss: 0.4037 - val_acc: 0.9374Epoch 199/500225s 450ms/step - loss: 0.2650 - acc: 0.9796 - val_loss: 0.3946 - val_acc: 0.9383Epoch 200/500225s 450ms/step - loss: 0.2595 - acc: 0.9804 - val_loss: 0.3933 - val_acc: 0.9401Epoch 201/500225s 450ms/step - loss: 0.2575 - acc: 0.9813 - val_loss: 0.3920 - val_acc: 0.9396Epoch 202/500225s 450ms/step - loss: 0.2610 - acc: 0.9788 - val_loss: 0.3916 - val_acc: 0.9383Epoch 203/500224s 448ms/step - loss: 0.2591 - acc: 0.9796 - val_loss: 0.4071 - val_acc: 0.9366Epoch 204/500221s 442ms/step - loss: 0.2575 - acc: 0.9794 - val_loss: 0.3900 - val_acc: 0.9390Epoch 205/500224s 448ms/step - loss: 0.2534 - acc: 0.9801 - val_loss: 0.3909 - val_acc: 0.9394Epoch 206/500225s 450ms/step - loss: 0.2505 - acc: 0.9813 - val_loss: 0.3957 - val_acc: 0.9407Epoch 207/500222s 443ms/step - loss: 0.2473 - acc: 0.9808 - val_loss: 0.3851 - val_acc: 0.9403Epoch 208/500220s 441ms/step - loss: 0.2490 - acc: 0.9803 - val_loss: 0.3753 - val_acc: 0.9435Epoch 209/500220s 441ms/step - loss: 0.2467 - acc: 0.9808 - val_loss: 0.3765 - val_acc: 0.9431Epoch 210/500220s 441ms/step - loss: 0.2457 - acc: 0.9805 - val_loss: 0.3830 - val_acc: 0.9407Epoch 211/500220s 441ms/step - loss: 0.2430 - acc: 0.9815 - val_loss: 0.3849 - val_acc: 0.9414Epoch 212/500221s 441ms/step - loss: 0.2483 - acc: 0.9789 - val_loss: 0.3818 - val_acc: 0.9407Epoch 213/500221s 441ms/step - loss: 0.2394 - acc: 0.9812 - val_loss: 0.3814 - val_acc: 0.9384Epoch 214/500220s 441ms/step - loss: 0.2425 - acc: 0.9797 - val_loss: 0.3818 - val_acc: 0.9400Epoch 215/500221s 441ms/step - loss: 0.2417 - acc: 0.9802 - val_loss: 0.3813 - val_acc: 0.9381Epoch 216/500220s 441ms/step - loss: 0.2433 - acc: 0.9790 - val_loss: 0.3790 - val_acc: 0.9382Epoch 217/500220s 441ms/step - loss: 0.2413 - acc: 0.9800 - val_loss: 0.3832 - val_acc: 0.9388Epoch 218/500221s 442ms/step - loss: 0.2386 - acc: 0.9798 - val_loss: 0.3793 - val_acc: 0.9377Epoch 219/500220s 441ms/step - loss: 0.2396 - acc: 0.9797 - val_loss: 0.3909 - val_acc: 0.9340Epoch 220/500221s 441ms/step - loss: 0.2376 - acc: 0.9796 - val_loss: 0.3930 - val_acc: 0.9364Epoch 221/500221s 441ms/step - loss: 0.2365 - acc: 0.9806 - val_loss: 0.3738 - val_acc: 0.9370Epoch 222/500220s 441ms/step - loss: 0.2398 - acc: 0.9785 - val_loss: 0.3940 - val_acc: 0.9340Epoch 223/500220s 441ms/step - loss: 0.2359 - acc: 0.9800 - val_loss: 0.3768 - val_acc: 0.9411Epoch 224/500221s 441ms/step - loss: 0.2365 - acc: 0.9795 - val_loss: 0.3841 - val_acc: 0.9354Epoch 225/500221s 442ms/step - loss: 0.2353 - acc: 0.9802 - val_loss: 0.3856 - val_acc: 0.9374Epoch 226/500221s 441ms/step - loss: 0.2389 - acc: 0.9783 - val_loss: 0.3753 - val_acc: 0.9379Epoch 227/500220s 441ms/step - loss: 0.2312 - acc: 0.9809 - val_loss: 0.3766 - val_acc: 0.9403Epoch 228/500220s 441ms/step - loss: 0.2394 - acc: 0.9772 - val_loss: 0.3825 - val_acc: 0.9374Epoch 229/500220s 440ms/step - loss: 0.2333 - acc: 0.9795 - val_loss: 0.3886 - val_acc: 0.9352Epoch 230/500220s 441ms/step - loss: 0.2290 - acc: 0.9804 - val_loss: 0.3754 - val_acc: 0.9375Epoch 231/500221s 441ms/step - loss: 0.2297 - acc: 0.9804 - val_loss: 0.3832 - val_acc: 0.9370Epoch 232/500221s 442ms/step - loss: 0.2333 - acc: 0.9790 - val_loss: 0.3736 - val_acc: 0.9388Epoch 233/500221s 442ms/step - loss: 0.2344 - acc: 0.9781 - val_loss: 0.3842 - val_acc: 0.9363Epoch 234/500220s 441ms/step - loss: 0.2314 - acc: 0.9797 - val_loss: 0.3821 - val_acc: 0.9355Epoch 235/500220s 440ms/step - loss: 0.2304 - acc: 0.9794 - val_loss: 0.3787 - val_acc: 0.9368Epoch 236/500221s 442ms/step - loss: 0.2330 - acc: 0.9784 - val_loss: 0.3721 - val_acc: 0.9369Epoch 237/500220s 440ms/step - loss: 0.2317 - acc: 0.9788 - val_loss: 0.3697 - val_acc: 0.9387Epoch 238/500221s 441ms/step - loss: 0.2286 - acc: 0.9792 - val_loss: 0.3800 - val_acc: 0.9375Epoch 239/500220s 441ms/step - loss: 0.2312 - acc: 0.9788 - val_loss: 0.3691 - val_acc: 0.9399Epoch 240/500220s 441ms/step - loss: 0.2300 - acc: 0.9790 - val_loss: 0.3751 - val_acc: 0.9399Epoch 241/500220s 441ms/step - loss: 0.2266 - acc: 0.9799 - val_loss: 0.3759 - val_acc: 0.9363Epoch 242/500220s 441ms/step - loss: 0.2308 - acc: 0.9785 - val_loss: 0.3801 - val_acc: 0.9365Epoch 243/500220s 440ms/step - loss: 0.2270 - acc: 0.9796 - val_loss: 0.3688 - val_acc: 0.9390Epoch 244/500220s 441ms/step - loss: 0.2259 - acc: 0.9799 - val_loss: 0.3671 - val_acc: 0.9404Epoch 245/500220s 441ms/step - loss: 0.2261 - acc: 0.9811 - val_loss: 0.3679 - val_acc: 0.9365Epoch 246/500220s 441ms/step - loss: 0.2266 - acc: 0.9792 - val_loss: 0.3778 - val_acc: 0.9353Epoch 247/500221s 441ms/step - loss: 0.2276 - acc: 0.9788 - val_loss: 0.3714 - val_acc: 0.9368Epoch 248/500221s 441ms/step - loss: 0.2247 - acc: 0.9798 - val_loss: 0.3816 - val_acc: 0.9332Epoch 249/500220s 441ms/step - loss: 0.2263 - acc: 0.9793 - val_loss: 0.3611 - val_acc: 0.9409Epoch 250/500220s 441ms/step - loss: 0.2289 - acc: 0.9784 - val_loss: 0.3810 - val_acc: 0.9349Epoch 251/500220s 440ms/step - loss: 0.2283 - acc: 0.9776 - val_loss: 0.3684 - val_acc: 0.9353Epoch 252/500220s 440ms/step - loss: 0.2269 - acc: 0.9789 - val_loss: 0.3777 - val_acc: 0.9352Epoch 253/500220s 441ms/step - loss: 0.2251 - acc: 0.9795 - val_loss: 0.3760 - val_acc: 0.9355Epoch 254/500220s 441ms/step - loss: 0.2305 - acc: 0.9773 - val_loss: 0.3834 - val_acc: 0.9354Epoch 255/500221s 441ms/step - loss: 0.2241 - acc: 0.9790 - val_loss: 0.3709 - val_acc: 0.9379Epoch 256/500220s 440ms/step - loss: 0.2255 - acc: 0.9788 - val_loss: 0.3664 - val_acc: 0.9367Epoch 257/500220s 441ms/step - loss: 0.2235 - acc: 0.9799 - val_loss: 0.3739 - val_acc: 0.9364Epoch 258/500221s 441ms/step - loss: 0.2268 - acc: 0.9788 - val_loss: 0.3718 - val_acc: 0.9358Epoch 259/500220s 440ms/step - loss: 0.2211 - acc: 0.9799 - val_loss: 0.3787 - val_acc: 0.9360Epoch 260/500221s 441ms/step - loss: 0.2253 - acc: 0.9784 - val_loss: 0.3616 - val_acc: 0.9384Epoch 261/500220s 441ms/step - loss: 0.2215 - acc: 0.9803 - val_loss: 0.3872 - val_acc: 0.9318Epoch 262/500220s 441ms/step - loss: 0.2277 - acc: 0.9779 - val_loss: 0.3808 - val_acc: 0.9360Epoch 263/500221s 442ms/step - loss: 0.2268 - acc: 0.9779 - val_loss: 0.3859 - val_acc: 0.9343Epoch 264/500220s 441ms/step - loss: 0.2246 - acc: 0.9791 - val_loss: 0.3848 - val_acc: 0.9330Epoch 265/500221s 441ms/step - loss: 0.2246 - acc: 0.9783 - val_loss: 0.3800 - val_acc: 0.9354Epoch 266/500220s 441ms/step - loss: 0.2260 - acc: 0.9786 - val_loss: 0.3780 - val_acc: 0.9337Epoch 267/500221s 441ms/step - loss: 0.2216 - acc: 0.9804 - val_loss: 0.3744 - val_acc: 0.9373Epoch 268/500221s 441ms/step - loss: 0.2208 - acc: 0.9807 - val_loss: 0.3647 - val_acc: 0.9394Epoch 269/500221s 441ms/step - loss: 0.2247 - acc: 0.9789 - val_loss: 0.3728 - val_acc: 0.9348Epoch 270/500221s 441ms/step - loss: 0.2190 - acc: 0.9804 - val_loss: 0.3703 - val_acc: 0.9366Epoch 271/500221s 441ms/step - loss: 0.2213 - acc: 0.9798 - val_loss: 0.3617 - val_acc: 0.9370Epoch 272/500221s 441ms/step - loss: 0.2255 - acc: 0.9776 - val_loss: 0.3695 - val_acc: 0.9377Epoch 273/500220s 441ms/step - loss: 0.2245 - acc: 0.9781 - val_loss: 0.3775 - val_acc: 0.9349Epoch 274/500221s 441ms/step - loss: 0.2225 - acc: 0.9785 - val_loss: 0.3806 - val_acc: 0.9345Epoch 275/500221s 441ms/step - loss: 0.2229 - acc: 0.9794 - val_loss: 0.3718 - val_acc: 0.9373Epoch 276/500221s 441ms/step - loss: 0.2195 - acc: 0.9806 - val_loss: 0.3849 - val_acc: 0.9339Epoch 277/500221s 441ms/step - loss: 0.2204 - acc: 0.9796 - val_loss: 0.3656 - val_acc: 0.9390Epoch 278/500221s 441ms/step - loss: 0.2195 - acc: 0.9800 - val_loss: 0.3760 - val_acc: 0.9374Epoch 279/500220s 441ms/step - loss: 0.2240 - acc: 0.9790 - val_loss: 0.3694 - val_acc: 0.9344Epoch 280/500220s 441ms/step - loss: 0.2203 - acc: 0.9800 - val_loss: 0.3602 - val_acc: 0.9386Epoch 281/500221s 441ms/step - loss: 0.2201 - acc: 0.9801 - val_loss: 0.3794 - val_acc: 0.9354Epoch 282/500221s 441ms/step - loss: 0.2208 - acc: 0.9802 - val_loss: 0.3660 - val_acc: 0.9377Epoch 283/500220s 441ms/step - loss: 0.2164 - acc: 0.9808 - val_loss: 0.3827 - val_acc: 0.9327Epoch 284/500221s 441ms/step - loss: 0.2227 - acc: 0.9785 - val_loss: 0.3633 - val_acc: 0.9401Epoch 285/500221s 441ms/step - loss: 0.2184 - acc: 0.9808 - val_loss: 0.3862 - val_acc: 0.9309Epoch 286/500221s 441ms/step - loss: 0.2159 - acc: 0.9814 - val_loss: 0.3762 - val_acc: 0.9375Epoch 287/500221s 442ms/step - loss: 0.2238 - acc: 0.9775 - val_loss: 0.3692 - val_acc: 0.9336Epoch 288/500221s 441ms/step - loss: 0.2228 - acc: 0.9786 - val_loss: 0.3746 - val_acc: 0.9354Epoch 289/500220s 441ms/step - loss: 0.2197 - acc: 0.9805 - val_loss: 0.3581 - val_acc: 0.9392Epoch 290/500222s 444ms/step - loss: 0.2174 - acc: 0.9806 - val_loss: 0.3626 - val_acc: 0.9376Epoch 291/500221s 441ms/step - loss: 0.2201 - acc: 0.9796 - val_loss: 0.3834 - val_acc: 0.9323Epoch 292/500221s 442ms/step - loss: 0.2217 - acc: 0.9788 - val_loss: 0.3770 - val_acc: 0.9356Epoch 293/500221s 442ms/step - loss: 0.2214 - acc: 0.9791 - val_loss: 0.3685 - val_acc: 0.9359Epoch 294/500221s 442ms/step - loss: 0.2186 - acc: 0.9795 - val_loss: 0.3708 - val_acc: 0.9375Epoch 295/500221s 442ms/step - loss: 0.2191 - acc: 0.9798 - val_loss: 0.3763 - val_acc: 0.9367Epoch 296/500221s 442ms/step - loss: 0.2200 - acc: 0.9803 - val_loss: 0.3730 - val_acc: 0.9362Epoch 297/500221s 442ms/step - loss: 0.2207 - acc: 0.9795 - val_loss: 0.3731 - val_acc: 0.9350Epoch 298/500221s 441ms/step - loss: 0.2197 - acc: 0.9793 - val_loss: 0.3533 - val_acc: 0.9387Epoch 299/500221s 441ms/step - loss: 0.2201 - acc: 0.9797 - val_loss: 0.3747 - val_acc: 0.9365Epoch 300/500221s 441ms/step - loss: 0.2160 - acc: 0.9809 - val_loss: 0.3678 - val_acc: 0.9386Epoch 301/500lr changed to 0.0009999999776482583221s 442ms/step - loss: 0.2016 - acc: 0.9862 - val_loss: 0.3429 - val_acc: 0.9460Epoch 302/500221s 442ms/step - loss: 0.1867 - acc: 0.9912 - val_loss: 0.3401 - val_acc: 0.9479Epoch 303/500221s 442ms/step - loss: 0.1819 - acc: 0.9931 - val_loss: 0.3386 - val_acc: 0.9472Epoch 304/500221s 441ms/step - loss: 0.1794 - acc: 0.9943 - val_loss: 0.3365 - val_acc: 0.9486Epoch 305/500221s 442ms/step - loss: 0.1787 - acc: 0.9938 - val_loss: 0.3357 - val_acc: 0.9490Epoch 306/500221s 442ms/step - loss: 0.1760 - acc: 0.9951 - val_loss: 0.3340 - val_acc: 0.9482Epoch 307/500221s 442ms/step - loss: 0.1769 - acc: 0.9943 - val_loss: 0.3335 - val_acc: 0.9489Epoch 308/500221s 442ms/step - loss: 0.1746 - acc: 0.9952 - val_loss: 0.3342 - val_acc: 0.9501Epoch 309/500220s 441ms/step - loss: 0.1731 - acc: 0.9955 - val_loss: 0.3358 - val_acc: 0.9494Epoch 310/500221s 441ms/step - loss: 0.1727 - acc: 0.9957 - val_loss: 0.3339 - val_acc: 0.9501Epoch 311/500221s 441ms/step - loss: 0.1720 - acc: 0.9958 - val_loss: 0.3305 - val_acc: 0.9511Epoch 312/500221s 442ms/step - loss: 0.1715 - acc: 0.9960 - val_loss: 0.3325 - val_acc: 0.9510Epoch 313/500221s 441ms/step - loss: 0.1713 - acc: 0.9956 - val_loss: 0.3348 - val_acc: 0.9495Epoch 314/500221s 442ms/step - loss: 0.1697 - acc: 0.9963 - val_loss: 0.3338 - val_acc: 0.9500Epoch 315/500221s 441ms/step - loss: 0.1693 - acc: 0.9965 - val_loss: 0.3344 - val_acc: 0.9500Epoch 316/500221s 442ms/step - loss: 0.1687 - acc: 0.9960 - val_loss: 0.3332 - val_acc: 0.9507Epoch 317/500221s 442ms/step - loss: 0.1673 - acc: 0.9967 - val_loss: 0.3317 - val_acc: 0.9504Epoch 318/500221s 442ms/step - loss: 0.1678 - acc: 0.9965 - val_loss: 0.3321 - val_acc: 0.9502Epoch 319/500221s 442ms/step - loss: 0.1668 - acc: 0.9968 - val_loss: 0.3320 - val_acc: 0.9495Epoch 320/500221s 442ms/step - loss: 0.1671 - acc: 0.9965 - val_loss: 0.3326 - val_acc: 0.9493Epoch 321/500221s 442ms/step - loss: 0.1651 - acc: 0.9973 - val_loss: 0.3311 - val_acc: 0.9510Epoch 322/500221s 442ms/step - loss: 0.1659 - acc: 0.9967 - val_loss: 0.3320 - val_acc: 0.9498Epoch 323/500221s 441ms/step - loss: 0.1659 - acc: 0.9965 - val_loss: 0.3319 - val_acc: 0.9506Epoch 324/500221s 441ms/step - loss: 0.1648 - acc: 0.9968 - val_loss: 0.3337 - val_acc: 0.9505Epoch 325/500221s 442ms/step - loss: 0.1645 - acc: 0.9967 - val_loss: 0.3342 - val_acc: 0.9495Epoch 326/500221s 442ms/step - loss: 0.1640 - acc: 0.9971 - val_loss: 0.3324 - val_acc: 0.9495Epoch 327/500221s 442ms/step - loss: 0.1630 - acc: 0.9972 - val_loss: 0.3289 - val_acc: 0.9507Epoch 328/500221s 442ms/step - loss: 0.1630 - acc: 0.9972 - val_loss: 0.3306 - val_acc: 0.9512Epoch 329/500221s 442ms/step - loss: 0.1636 - acc: 0.9967 - val_loss: 0.3330 - val_acc: 0.9507Epoch 330/500221s 442ms/step - loss: 0.1622 - acc: 0.9973 - val_loss: 0.3326 - val_acc: 0.9501Epoch 331/500221s 441ms/step - loss: 0.1612 - acc: 0.9975 - val_loss: 0.3305 - val_acc: 0.9514Epoch 332/500221s 441ms/step - loss: 0.1600 - acc: 0.9979 - val_loss: 0.3299 - val_acc: 0.9517Epoch 333/500221s 441ms/step - loss: 0.1597 - acc: 0.9980 - val_loss: 0.3313 - val_acc: 0.9511Epoch 334/500221s 441ms/step - loss: 0.1607 - acc: 0.9972 - val_loss: 0.3278 - val_acc: 0.9517Epoch 335/500221s 443ms/step - loss: 0.1607 - acc: 0.9974 - val_loss: 0.3277 - val_acc: 0.9527Epoch 336/500221s 441ms/step - loss: 0.1588 - acc: 0.9980 - val_loss: 0.3276 - val_acc: 0.9527Epoch 337/500221s 442ms/step - loss: 0.1595 - acc: 0.9973 - val_loss: 0.3257 - val_acc: 0.9520Epoch 338/500221s 441ms/step - loss: 0.1585 - acc: 0.9976 - val_loss: 0.3274 - val_acc: 0.9521Epoch 339/500221s 442ms/step - loss: 0.1594 - acc: 0.9974 - val_loss: 0.3298 - val_acc: 0.9524Epoch 340/500221s 441ms/step - loss: 0.1582 - acc: 0.9977 - val_loss: 0.3282 - val_acc: 0.9530Epoch 341/500221s 441ms/step - loss: 0.1590 - acc: 0.9972 - val_loss: 0.3273 - val_acc: 0.9527Epoch 342/500221s 441ms/step - loss: 0.1575 - acc: 0.9977 - val_loss: 0.3262 - val_acc: 0.9518Epoch 343/500221s 442ms/step - loss: 0.1570 - acc: 0.9979 - val_loss: 0.3263 - val_acc: 0.9515Epoch 344/500221s 442ms/step - loss: 0.1574 - acc: 0.9977 - val_loss: 0.3259 - val_acc: 0.9511Epoch 345/500221s 442ms/step - loss: 0.1568 - acc: 0.9979 - val_loss: 0.3262 - val_acc: 0.9518Epoch 346/500221s 442ms/step - loss: 0.1565 - acc: 0.9978 - val_loss: 0.3262 - val_acc: 0.9531Epoch 347/500221s 442ms/step - loss: 0.1558 - acc: 0.9979 - val_loss: 0.3248 - val_acc: 0.9538Epoch 348/500221s 442ms/step - loss: 0.1554 - acc: 0.9978 - val_loss: 0.3223 - val_acc: 0.9532Epoch 349/500221s 442ms/step - loss: 0.1554 - acc: 0.9977 - val_loss: 0.3242 - val_acc: 0.9528Epoch 350/500221s 442ms/step - loss: 0.1551 - acc: 0.9977 - val_loss: 0.3255 - val_acc: 0.9527Epoch 351/500221s 442ms/step - loss: 0.1546 - acc: 0.9977 - val_loss: 0.3277 - val_acc: 0.9517Epoch 352/500221s 442ms/step - loss: 0.1556 - acc: 0.9975 - val_loss: 0.3230 - val_acc: 0.9514Epoch 353/500221s 442ms/step - loss: 0.1546 - acc: 0.9975 - val_loss: 0.3240 - val_acc: 0.9526Epoch 354/500221s 442ms/step - loss: 0.1535 - acc: 0.9980 - val_loss: 0.3257 - val_acc: 0.9524Epoch 355/500221s 442ms/step - loss: 0.1529 - acc: 0.9980 - val_loss: 0.3260 - val_acc: 0.9530Epoch 356/500221s 442ms/step - loss: 0.1540 - acc: 0.9978 - val_loss: 0.3261 - val_acc: 0.9522Epoch 357/500221s 442ms/step - loss: 0.1534 - acc: 0.9976 - val_loss: 0.3227 - val_acc: 0.9527Epoch 358/500221s 441ms/step - loss: 0.1528 - acc: 0.9980 - val_loss: 0.3226 - val_acc: 0.9525Epoch 359/500221s 442ms/step - loss: 0.1526 - acc: 0.9978 - val_loss: 0.3240 - val_acc: 0.9527Epoch 360/500221s 442ms/step - loss: 0.1520 - acc: 0.9981 - val_loss: 0.3234 - val_acc: 0.9518Epoch 361/500221s 442ms/step - loss: 0.1516 - acc: 0.9980 - val_loss: 0.3245 - val_acc: 0.9508Epoch 362/500221s 442ms/step - loss: 0.1522 - acc: 0.9976 - val_loss: 0.3222 - val_acc: 0.9520Epoch 363/500221s 441ms/step - loss: 0.1509 - acc: 0.9981 - val_loss: 0.3221 - val_acc: 0.9523Epoch 364/500221s 442ms/step - loss: 0.1508 - acc: 0.9980 - val_loss: 0.3249 - val_acc: 0.9522Epoch 365/500221s 442ms/step - loss: 0.1503 - acc: 0.9981 - val_loss: 0.3243 - val_acc: 0.9503Epoch 366/500221s 441ms/step - loss: 0.1509 - acc: 0.9981 - val_loss: 0.3249 - val_acc: 0.9502Epoch 367/500221s 442ms/step - loss: 0.1502 - acc: 0.9979 - val_loss: 0.3246 - val_acc: 0.9506Epoch 368/500221s 442ms/step - loss: 0.1499 - acc: 0.9981 - val_loss: 0.3225 - val_acc: 0.9523Epoch 369/500221s 441ms/step - loss: 0.1505 - acc: 0.9978 - val_loss: 0.3229 - val_acc: 0.9526Epoch 370/500221s 442ms/step - loss: 0.1497 - acc: 0.9980 - val_loss: 0.3216 - val_acc: 0.9522Epoch 371/500222s 443ms/step - loss: 0.1492 - acc: 0.9979 - val_loss: 0.3235 - val_acc: 0.9511Epoch 372/500224s 448ms/step - loss: 0.1495 - acc: 0.9980 - val_loss: 0.3225 - val_acc: 0.9527Epoch 373/500221s 441ms/step - loss: 0.1483 - acc: 0.9982 - val_loss: 0.3261 - val_acc: 0.9520Epoch 374/500221s 442ms/step - loss: 0.1478 - acc: 0.9984 - val_loss: 0.3250 - val_acc: 0.9522Epoch 375/500221s 442ms/step - loss: 0.1482 - acc: 0.9979 - val_loss: 0.3239 - val_acc: 0.9524Epoch 376/500221s 442ms/step - loss: 0.1477 - acc: 0.9981 - val_loss: 0.3247 - val_acc: 0.9528Epoch 377/500221s 442ms/step - loss: 0.1483 - acc: 0.9979 - val_loss: 0.3271 - val_acc: 0.9512Epoch 378/500221s 442ms/step - loss: 0.1471 - acc: 0.9980 - val_loss: 0.3214 - val_acc: 0.9533Epoch 379/500221s 442ms/step - loss: 0.1471 - acc: 0.9979 - val_loss: 0.3224 - val_acc: 0.9527Epoch 380/500222s 443ms/step - loss: 0.1468 - acc: 0.9982 - val_loss: 0.3211 - val_acc: 0.9537Epoch 381/500221s 442ms/step - loss: 0.1470 - acc: 0.9980 - val_loss: 0.3190 - val_acc: 0.9534Epoch 382/500221s 442ms/step - loss: 0.1458 - acc: 0.9983 - val_loss: 0.3221 - val_acc: 0.9538Epoch 383/500221s 442ms/step - loss: 0.1459 - acc: 0.9980 - val_loss: 0.3199 - val_acc: 0.9538Epoch 384/500221s 442ms/step - loss: 0.1461 - acc: 0.9980 - val_loss: 0.3201 - val_acc: 0.9527Epoch 385/500221s 442ms/step - loss: 0.1449 - acc: 0.9984 - val_loss: 0.3206 - val_acc: 0.9523Epoch 386/500221s 442ms/step - loss: 0.1465 - acc: 0.9975 - val_loss: 0.3199 - val_acc: 0.9534Epoch 387/500221s 441ms/step - loss: 0.1451 - acc: 0.9980 - val_loss: 0.3223 - val_acc: 0.9526Epoch 388/500221s 442ms/step - loss: 0.1437 - acc: 0.9985 - val_loss: 0.3214 - val_acc: 0.9523Epoch 389/500221s 442ms/step - loss: 0.1439 - acc: 0.9981 - val_loss: 0.3229 - val_acc: 0.9525Epoch 390/500222s 443ms/step - loss: 0.1444 - acc: 0.9982 - val_loss: 0.3219 - val_acc: 0.9533Epoch 391/500221s 442ms/step - loss: 0.1437 - acc: 0.9982 - val_loss: 0.3200 - val_acc: 0.9524Epoch 392/500221s 442ms/step - loss: 0.1433 - acc: 0.9982 - val_loss: 0.3212 - val_acc: 0.9524Epoch 393/500221s 442ms/step - loss: 0.1428 - acc: 0.9983 - val_loss: 0.3212 - val_acc: 0.9517Epoch 394/500221s 442ms/step - loss: 0.1426 - acc: 0.9983 - val_loss: 0.3209 - val_acc: 0.9521Epoch 395/500221s 442ms/step - loss: 0.1425 - acc: 0.9986 - val_loss: 0.3197 - val_acc: 0.9522Epoch 396/500221s 442ms/step - loss: 0.1417 - acc: 0.9984 - val_loss: 0.3222 - val_acc: 0.9524Epoch 397/500221s 443ms/step - loss: 0.1422 - acc: 0.9982 - val_loss: 0.3201 - val_acc: 0.9524Epoch 398/500222s 444ms/step - loss: 0.1424 - acc: 0.9981 - val_loss: 0.3203 - val_acc: 0.9524Epoch 399/500221s 442ms/step - loss: 0.1415 - acc: 0.9984 - val_loss: 0.3193 - val_acc: 0.9529Epoch 400/500220s 440ms/step - loss: 0.1414 - acc: 0.9983 - val_loss: 0.3211 - val_acc: 0.9527Epoch 401/500220s 441ms/step - loss: 0.1407 - acc: 0.9984 - val_loss: 0.3184 - val_acc: 0.9534Epoch 402/500221s 442ms/step - loss: 0.1406 - acc: 0.9982 - val_loss: 0.3190 - val_acc: 0.9542Epoch 403/500221s 441ms/step - loss: 0.1410 - acc: 0.9983 - val_loss: 0.3228 - val_acc: 0.9530Epoch 404/500221s 442ms/step - loss: 0.1403 - acc: 0.9983 - val_loss: 0.3210 - val_acc: 0.9529Epoch 405/500221s 442ms/step - loss: 0.1404 - acc: 0.9982 - val_loss: 0.3217 - val_acc: 0.9527Epoch 406/500221s 442ms/step - loss: 0.1403 - acc: 0.9983 - val_loss: 0.3186 - val_acc: 0.9525Epoch 407/500221s 443ms/step - loss: 0.1408 - acc: 0.9978 - val_loss: 0.3213 - val_acc: 0.9535Epoch 408/500221s 443ms/step - loss: 0.1395 - acc: 0.9985 - val_loss: 0.3209 - val_acc: 0.9522Epoch 409/500221s 442ms/step - loss: 0.1387 - acc: 0.9987 - val_loss: 0.3221 - val_acc: 0.9511Epoch 410/500221s 442ms/step - loss: 0.1384 - acc: 0.9986 - val_loss: 0.3199 - val_acc: 0.9512Epoch 411/500221s 442ms/step - loss: 0.1386 - acc: 0.9984 - val_loss: 0.3176 - val_acc: 0.9529Epoch 412/500221s 441ms/step - loss: 0.1393 - acc: 0.9982 - val_loss: 0.3221 - val_acc: 0.9518Epoch 413/500221s 441ms/step - loss: 0.1383 - acc: 0.9986 - val_loss: 0.3208 - val_acc: 0.9528Epoch 414/500221s 442ms/step - loss: 0.1383 - acc: 0.9985 - val_loss: 0.3186 - val_acc: 0.9530Epoch 415/500222s 443ms/step - loss: 0.1383 - acc: 0.9983 - val_loss: 0.3219 - val_acc: 0.9522Epoch 416/500221s 442ms/step - loss: 0.1377 - acc: 0.9984 - val_loss: 0.3231 - val_acc: 0.9521Epoch 417/500221s 442ms/step - loss: 0.1375 - acc: 0.9983 - val_loss: 0.3222 - val_acc: 0.9524Epoch 418/500221s 442ms/step - loss: 0.1376 - acc: 0.9983 - val_loss: 0.3229 - val_acc: 0.9523Epoch 419/500221s 442ms/step - loss: 0.1376 - acc: 0.9981 - val_loss: 0.3210 - val_acc: 0.9520Epoch 420/500221s 442ms/step - loss: 0.1362 - acc: 0.9985 - val_loss: 0.3207 - val_acc: 0.9523Epoch 421/500221s 442ms/step - loss: 0.1368 - acc: 0.9983 - val_loss: 0.3181 - val_acc: 0.9524Epoch 422/500221s 443ms/step - loss: 0.1359 - acc: 0.9986 - val_loss: 0.3173 - val_acc: 0.9529Epoch 423/500221s 442ms/step - loss: 0.1358 - acc: 0.9985 - val_loss: 0.3180 - val_acc: 0.9534Epoch 424/500221s 442ms/step - loss: 0.1356 - acc: 0.9986 - val_loss: 0.3145 - val_acc: 0.9527Epoch 425/500221s 442ms/step - loss: 0.1356 - acc: 0.9984 - val_loss: 0.3168 - val_acc: 0.9518Epoch 426/500221s 442ms/step - loss: 0.1353 - acc: 0.9986 - val_loss: 0.3137 - val_acc: 0.9528Epoch 427/500221s 442ms/step - loss: 0.1352 - acc: 0.9983 - val_loss: 0.3135 - val_acc: 0.9522Epoch 428/500221s 442ms/step - loss: 0.1349 - acc: 0.9983 - val_loss: 0.3173 - val_acc: 0.9515Epoch 429/500221s 441ms/step - loss: 0.1343 - acc: 0.9986 - val_loss: 0.3213 - val_acc: 0.9507Epoch 430/500221s 442ms/step - loss: 0.1352 - acc: 0.9982 - val_loss: 0.3126 - val_acc: 0.9522Epoch 431/500221s 442ms/step - loss: 0.1349 - acc: 0.9981 - val_loss: 0.3169 - val_acc: 0.9505Epoch 432/500221s 441ms/step - loss: 0.1336 - acc: 0.9985 - val_loss: 0.3198 - val_acc: 0.9501Epoch 433/500221s 442ms/step - loss: 0.1343 - acc: 0.9982 - val_loss: 0.3190 - val_acc: 0.9510Epoch 434/500221s 441ms/step - loss: 0.1337 - acc: 0.9984 - val_loss: 0.3182 - val_acc: 0.9504Epoch 435/500221s 442ms/step - loss: 0.1331 - acc: 0.9984 - val_loss: 0.3177 - val_acc: 0.9507Epoch 436/500221s 441ms/step - loss: 0.1328 - acc: 0.9986 - val_loss: 0.3173 - val_acc: 0.9512Epoch 437/500221s 442ms/step - loss: 0.1331 - acc: 0.9983 - val_loss: 0.3203 - val_acc: 0.9508Epoch 438/500221s 442ms/step - loss: 0.1327 - acc: 0.9983 - val_loss: 0.3148 - val_acc: 0.9518Epoch 439/500221s 442ms/step - loss: 0.1330 - acc: 0.9983 - val_loss: 0.3128 - val_acc: 0.9517Epoch 440/500221s 441ms/step - loss: 0.1329 - acc: 0.9984 - val_loss: 0.3160 - val_acc: 0.9508Epoch 441/500221s 442ms/step - loss: 0.1324 - acc: 0.9984 - val_loss: 0.3167 - val_acc: 0.9507Epoch 442/500221s 441ms/step - loss: 0.1318 - acc: 0.9986 - val_loss: 0.3176 - val_acc: 0.9513Epoch 443/500221s 441ms/step - loss: 0.1317 - acc: 0.9983 - val_loss: 0.3188 - val_acc: 0.9527Epoch 444/500221s 442ms/step - loss: 0.1310 - acc: 0.9986 - val_loss: 0.3166 - val_acc: 0.9513Epoch 445/500221s 441ms/step - loss: 0.1315 - acc: 0.9982 - val_loss: 0.3168 - val_acc: 0.9513Epoch 446/500221s 441ms/step - loss: 0.1311 - acc: 0.9984 - val_loss: 0.3179 - val_acc: 0.9506Epoch 447/500221s 442ms/step - loss: 0.1313 - acc: 0.9984 - val_loss: 0.3192 - val_acc: 0.9504Epoch 448/500221s 441ms/step - loss: 0.1306 - acc: 0.9985 - val_loss: 0.3191 - val_acc: 0.9512Epoch 449/500221s 442ms/step - loss: 0.1302 - acc: 0.9987 - val_loss: 0.3182 - val_acc: 0.9511Epoch 450/500221s 442ms/step - loss: 0.1303 - acc: 0.9984 - val_loss: 0.3147 - val_acc: 0.9518Epoch 451/500lr changed to 9.999999310821295e-05221s 441ms/step - loss: 0.1303 - acc: 0.9983 - val_loss: 0.3143 - val_acc: 0.9514Epoch 452/500221s 441ms/step - loss: 0.1305 - acc: 0.9984 - val_loss: 0.3135 - val_acc: 0.9513Epoch 453/500221s 442ms/step - loss: 0.1298 - acc: 0.9986 - val_loss: 0.3131 - val_acc: 0.9516Epoch 454/500221s 442ms/step - loss: 0.1301 - acc: 0.9984 - val_loss: 0.3129 - val_acc: 0.9519Epoch 455/500221s 442ms/step - loss: 0.1293 - acc: 0.9986 - val_loss: 0.3130 - val_acc: 0.9518Epoch 456/500221s 442ms/step - loss: 0.1295 - acc: 0.9988 - val_loss: 0.3125 - val_acc: 0.9519Epoch 457/500221s 441ms/step - loss: 0.1295 - acc: 0.9986 - val_loss: 0.3125 - val_acc: 0.9525Epoch 458/500221s 442ms/step - loss: 0.1289 - acc: 0.9989 - val_loss: 0.3124 - val_acc: 0.9525Epoch 459/500221s 441ms/step - loss: 0.1294 - acc: 0.9988 - val_loss: 0.3126 - val_acc: 0.9526Epoch 460/500221s 441ms/step - loss: 0.1296 - acc: 0.9987 - val_loss: 0.3129 - val_acc: 0.9524Epoch 461/500221s 442ms/step - loss: 0.1301 - acc: 0.9985 - val_loss: 0.3133 - val_acc: 0.9526Epoch 462/500221s 441ms/step - loss: 0.1293 - acc: 0.9987 - val_loss: 0.3133 - val_acc: 0.9526Epoch 463/500221s 442ms/step - loss: 0.1290 - acc: 0.9988 - val_loss: 0.3130 - val_acc: 0.9527Epoch 464/500221s 441ms/step - loss: 0.1298 - acc: 0.9984 - val_loss: 0.3126 - val_acc: 0.9530Epoch 465/500221s 441ms/step - loss: 0.1290 - acc: 0.9986 - val_loss: 0.3122 - val_acc: 0.9525Epoch 466/500221s 442ms/step - loss: 0.1292 - acc: 0.9986 - val_loss: 0.3121 - val_acc: 0.9526Epoch 467/500221s 441ms/step - loss: 0.1286 - acc: 0.9989 - val_loss: 0.3122 - val_acc: 0.9524Epoch 468/500221s 442ms/step - loss: 0.1288 - acc: 0.9989 - val_loss: 0.3123 - val_acc: 0.9526Epoch 469/500221s 441ms/step - loss: 0.1284 - acc: 0.9989 - val_loss: 0.3130 - val_acc: 0.9522Epoch 470/500223s 445ms/step - loss: 0.1284 - acc: 0.9989 - val_loss: 0.3136 - val_acc: 0.9522Epoch 471/500221s 442ms/step - loss: 0.1282 - acc: 0.9990 - val_loss: 0.3138 - val_acc: 0.9517Epoch 472/500221s 442ms/step - loss: 0.1291 - acc: 0.9988 - val_loss: 0.3133 - val_acc: 0.9523Epoch 473/500221s 441ms/step - loss: 0.1296 - acc: 0.9984 - val_loss: 0.3130 - val_acc: 0.9524Epoch 474/500221s 441ms/step - loss: 0.1284 - acc: 0.9988 - val_loss: 0.3128 - val_acc: 0.9527Epoch 475/500221s 441ms/step - loss: 0.1283 - acc: 0.9989 - val_loss: 0.3126 - val_acc: 0.9523Epoch 476/500221s 442ms/step - loss: 0.1290 - acc: 0.9987 - val_loss: 0.3125 - val_acc: 0.9524Epoch 477/500221s 442ms/step - loss: 0.1287 - acc: 0.9988 - val_loss: 0.3121 - val_acc: 0.9521Epoch 478/500221s 442ms/step - loss: 0.1291 - acc: 0.9986 - val_loss: 0.3123 - val_acc: 0.9521Epoch 479/500221s 442ms/step - loss: 0.1292 - acc: 0.9986 - val_loss: 0.3124 - val_acc: 0.9522Epoch 480/500221s 442ms/step - loss: 0.1291 - acc: 0.9986 - val_loss: 0.3123 - val_acc: 0.9519Epoch 481/500221s 442ms/step - loss: 0.1282 - acc: 0.9989 - val_loss: 0.3125 - val_acc: 0.9521Epoch 482/500221s 442ms/step - loss: 0.1291 - acc: 0.9988 - val_loss: 0.3125 - val_acc: 0.9522Epoch 483/500221s 442ms/step - loss: 0.1286 - acc: 0.9988 - val_loss: 0.3125 - val_acc: 0.9516Epoch 484/500220s 441ms/step - loss: 0.1280 - acc: 0.9991 - val_loss: 0.3123 - val_acc: 0.9518Epoch 485/500220s 441ms/step - loss: 0.1281 - acc: 0.9989 - val_loss: 0.3128 - val_acc: 0.9519Epoch 486/500221s 441ms/step - loss: 0.1281 - acc: 0.9990 - val_loss: 0.3127 - val_acc: 0.9520Epoch 487/500221s 441ms/step - loss: 0.1282 - acc: 0.9990 - val_loss: 0.3127 - val_acc: 0.9520Epoch 488/500221s 441ms/step - loss: 0.1283 - acc: 0.9988 - val_loss: 0.3129 - val_acc: 0.9520Epoch 489/500221s 442ms/step - loss: 0.1282 - acc: 0.9988 - val_loss: 0.3131 - val_acc: 0.9521Epoch 490/500221s 441ms/step - loss: 0.1283 - acc: 0.9987 - val_loss: 0.3131 - val_acc: 0.9522Epoch 491/500221s 441ms/step - loss: 0.1280 - acc: 0.9990 - val_loss: 0.3133 - val_acc: 0.9526Epoch 492/500221s 442ms/step - loss: 0.1281 - acc: 0.9989 - val_loss: 0.3132 - val_acc: 0.9524Epoch 493/500221s 441ms/step - loss: 0.1282 - acc: 0.9988 - val_loss: 0.3126 - val_acc: 0.9527Epoch 494/500221s 441ms/step - loss: 0.1281 - acc: 0.9989 - val_loss: 0.3125 - val_acc: 0.9522Epoch 495/500221s 441ms/step - loss: 0.1278 - acc: 0.9991 - val_loss: 0.3118 - val_acc: 0.9524Epoch 496/500221s 441ms/step - loss: 0.1280 - acc: 0.9990 - val_loss: 0.3118 - val_acc: 0.9522Epoch 497/500221s 442ms/step - loss: 0.1279 - acc: 0.9988 - val_loss: 0.3118 - val_acc: 0.9527Epoch 498/500222s 443ms/step - loss: 0.1275 - acc: 0.9991 - val_loss: 0.3113 - val_acc: 0.9523Epoch 499/500221s 443ms/step - loss: 0.1275 - acc: 0.9990 - val_loss: 0.3115 - val_acc: 0.9524Epoch 500/500221s 443ms/step - loss: 0.1278 - acc: 0.9989 - val_loss: 0.3119 - val_acc: 0.9525Train loss: 0.12599779877066614Train accuracy: 0.9992800006866455Test loss: 0.3119203564524651Test accuracy: 0.9525000017881393
相较于调参记录21的95.12%,只提高了0.13%。
Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458
https://ieeexplore.ieee.org/d...