本文主要分析java.util.concurrent.ThreadPoolExecutor的实现原理,首先看它的构造函数:

public ThreadPoolExecutor(int corePoolSize,                          int maximumPoolSize,                          long keepAliveTime,                          TimeUnit unit,                          BlockingQueue<Runnable> workQueue,                          ThreadFactory threadFactory,                          RejectedExecutionHandler handler) {    if (corePoolSize < 0 ||        maximumPoolSize <= 0 ||        maximumPoolSize < corePoolSize ||        keepAliveTime < 0)        throw new IllegalArgumentException();    if (workQueue == null || threadFactory == null || handler == null)        throw new NullPointerException();    this.corePoolSize = corePoolSize;    this.maximumPoolSize = maximumPoolSize;    this.workQueue = workQueue;    this.keepAliveTime = unit.toNanos(keepAliveTime);    this.threadFactory = threadFactory;    this.handler = handler;}
  • corePoolSize:线程池中稳定保存的线程数(一开始会小于这个数)
  • maximumPoolSize:线程池中最大线程数
  • keepAliveTime and unit:大于最小线程数的线程空闲后存活时间
  • workQueue:用于存放任务的阻塞队列
  • threadFactory:用于创建线程的工厂类
  • handler:当任务队列满了且线程数达到了最大时的饱和策略

对于IO密集型任务,线程数一般设为CPU数*2,对于计算密集型任务,线程数一般设为CPU数。

当调用execute方法时:

public void execute(Runnable command) {    if (command == null)        throw new NullPointerException();    /*     * Proceed in 3 steps:     *     * 1. If fewer than corePoolSize threads are running, try to     * start a new thread with the given command as its first     * task.  The call to addWorker atomically checks runState and     * workerCount, and so prevents false alarms that would add     * threads when it shouldn't, by returning false.     *     * 2. If a task can be successfully queued, then we still need     * to double-check whether we should have added a thread     * (because existing ones died since last checking) or that     * the pool shut down since entry into this method. So we     * recheck state and if necessary roll back the enqueuing if     * stopped, or start a new thread if there are none.     *     * 3. If we cannot queue task, then we try to add a new     * thread.  If it fails, we know we are shut down or saturated     * and so reject the task.     */    int c = ctl.get();    if (workerCountOf(c) < corePoolSize) {        if (addWorker(command, true))            return;        c = ctl.get();    }    if (isRunning(c) && workQueue.offer(command)) {        int recheck = ctl.get();        if (! isRunning(recheck) && remove(command))            reject(command);        else if (workerCountOf(recheck) == 0)            addWorker(null, false);    }    else if (!addWorker(command, false))        reject(command);}

其流程如图:

线程池状态变化如图:

  • RUNNING: Accept new tasks and process queued tasks
  • SHUTDOWN: Don't accept new tasks, but process queued tasks
  • STOP: Don't accept new tasks, don't process queued tasks, and interrupt in-progress tasks
  • TIDYING: All tasks have terminated, workerCount is zero, the thread transitioning to state TIDYING will run the terminated() hook method
  • TERMINATED: terminated() has completed

shutdownNow终止线程的方法是通过调用Thread.interrupt()方法来实现的:

 * <p> If this thread is blocked in an invocation of the {@link * Object#wait() wait()}, {@link Object#wait(long) wait(long)}, or {@link * Object#wait(long, int) wait(long, int)} methods of the {@link Object} * class, or of the {@link #join()}, {@link #join(long)}, {@link * #join(long, int)}, {@link #sleep(long)}, or {@link #sleep(long, int)}, * methods of this class, then its interrupt status will be cleared and it * will receive an {@link InterruptedException}. * * <p> If this thread is blocked in an I/O operation upon an {@link * java.nio.channels.InterruptibleChannel InterruptibleChannel} * then the channel will be closed, the thread's interrupt * status will be set, and the thread will receive a {@link * java.nio.channels.ClosedByInterruptException}. * * <p> If this thread is blocked in a {@link java.nio.channels.Selector} * then the thread's interrupt status will be set and it will return * immediately from the selection operation, possibly with a non-zero * value, just as if the selector's {@link * java.nio.channels.Selector#wakeup wakeup} method were invoked. * * <p> If none of the previous conditions hold then this thread's interrupt * status will be set. </p>

可以看到如果线程处于正常活动状态,那么会将该线程的中断标志设置为true,而无法中断当前的线程。所以,shutdownNow并不代表线程池就一定立即就能退出,它也可能必须要等待所有正在执行的任务都执行完成了才能退出。