1 说明

  1. LinkedList是一个双向链表,继承看List接口和Duque接口。
  2. LinkedList不是线程安全,确保线程安全方法
 List list = Collections.synchronizedList(new LinkedList(...))

2 源码分析

2.1 静态内部类

LinkedList是一个链表,需要一个node类作为节点,因此他在内部构建了一个静态内部类。

private static class Node<E> {    E item;    Node<E> next;    Node<E> prev;    Node(Node<E> prev, E element, Node<E> next) {        this.item = element;        this.next = next;        this.prev = prev;    }}

静态内部类,该类不能直接访问LinkedLIst的非静态成员(属性和方法),因为Java的约束:静态方法不能直接访问非静态的成员。

2.2 add()方法

往==链表尾部==添加元素,boolean修饰,总是返回true

public boolean add(E e) {    linkLast(e);    return true;}

再看linkLast(e)方法

void linkLast(E e) {    final Node<E> l = last;    final Node<E> newNode = new Node<>(l, e, null);    last = newNode;    if (l == null)        first = newNode;    else        l.next = newNode;    size++;    modCount++;}

如果l为空,则表示链表为空,插入的元素作为列表的第一个元素。
last是一个全局变量

transient Node<E> last;

然后相应的size也增加。size也是一个全局变量

transient int size = 0;

这样的话就可以写个获取size的方法,所以的size的方法为

public int size() {    return size;}

2.3 get()方法

public E get(int index) {    checkElementIndex(index);     return node(index).item;}

==checkElementIndex(index)== 判断寻找的索引是否越界,如果越界则抛出异常。
==node(index).item== 通过方法取得nod对象,然后取得item的值。

Node<E> node(int index) {    // assert isElementIndex(index);    if (index < (size >> 1)) {        Node<E> x = first;        for (int i = 0; i < index; i++)            x = x.next;        return x;    } else {        Node<E> x = last;        for (int i = size - 1; i > index; i--)            x = x.prev;        return x;    }}

这里通过位运算找出寻找范围的中间值,如果小于中间值,则出链头开始寻找,否则从链尾往回寻找。值得借鉴。

2.4 toArray()方法

将列表转成数组的一个桥梁方法

public Object[] toArray() {    Object[] result = new Object[size];    int i = 0;    for (Node<E> x = first; x != null; x = x.next)        result[i++] = x.item;    return result;}

2.5 clear()方法

此调用返回后,列表将为空

public void clear() {    // Clearing all of the links between nodes is "unnecessary", but:    // - helps a generational GC if the discarded nodes inhabit    //   more than one generation    // - is sure to free memory even if there is a reachable Iterator    for (Node<E> x = first; x != null; ) {        Node<E> next = x.next;        x.item = null;        x.next = null;        x.prev = null;        x = next;    }    first = last = null;    size = 0;    modCount++;}

可以利用该方法清空list列表,达到list多次复用的目的,减少内存花销