一、安装

地址:MaskRCNN-Benchmark(Pytorch版本)

首先要阅读官网说明的环境要求,千万不要一股脑直接安装,不然后面程序很有可能会报错!!!

  • PyTorch 1.0 from a nightly release. It will not work with 1.0 nor 1.0.1. Installation instructions can be found in https://pytorch.org/get-start...
  • torchvision from master
  • cocoapi
  • yacs
  • matplotlib
  • GCC >= 4.9
  • OpenCV
# first, make sure that your conda is setup properly with the right environment# for that, check that `which conda`, `which pip` and `which python` points to the# right path. From a clean conda env, this is what you need to doconda create --name maskrcnn_benchmarkconda activate maskrcnn_benchmark# this installs the right pip and dependencies for the fresh pythonconda install ipython# maskrcnn_benchmark and coco api dependenciespip install ninja yacs cython matplotlib tqdm opencv-python# follow PyTorch installation in https://pytorch.org/get-started/locally/# we give the instructions for CUDA 9.0conda install -c pytorch pytorch-nightly torchvision cudatoolkit=9.0export INSTALL_DIR=$PWD# install pycocotoolscd $INSTALL_DIRgit clone https://github.com/cocodataset/cocoapi.gitcd cocoapi/PythonAPIpython setup.py build_ext install# install apexcd $INSTALL_DIRgit clone https://github.com/NVIDIA/apex.gitcd apexpython setup.py install --cuda_ext --cpp_ext# install PyTorch Detectioncd $INSTALL_DIRgit clone https://github.com/facebookresearch/maskrcnn-benchmark.gitcd maskrcnn-benchmark# the following will install the lib with# symbolic links, so that you can modify# the files if you want and won't need to# re-build itpython setup.py build developunset INSTALL_DIR# or if you are on macOS# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop

一定要按上面的说明一步一步来,千万别省略,不然后面程序很有可能会报错!!!


二、数据准备

我要制作的原始数据格式是训练文件在一个文件(train),标注文件是csv格式,内容如下:

第一步,先把全部有标记的图片且分为训练集,验证集,分别存储在两个文件夹中,代码如下:

#!/usr/bin/env python# coding=UTF-8'''@Description: @Author: HuangQinJian@LastEditors: HuangQinJian@Date: 2019-05-01 12:56:08@LastEditTime: 2019-05-01 13:11:38'''import pandas as pdimport randomimport osimport shutilif not os.path.exists('trained/'):    os.mkdir('trained/')if not os.path.exists('val/'):    os.mkdir('val/')val_rate = 0.15img_path = 'train/'img_list = os.listdir(img_path)train = pd.read_csv('train_label_fix.csv')# print(img_list)random.shuffle(img_list)total_num = len(img_list)val_num = int(total_num*val_rate)train_num = total_num-val_numfor i in range(train_num):    img_name = img_list[i]    shutil.copy('train/' + img_name, 'trained/' + img_name)for j in range(val_num):    img_name = img_list[j+train_num]    shutil.copy('train/' + img_name, 'val/' + img_name)

第二步,把csv格式的标注文件转换成coco的格式,代码如下:

#!/usr/bin/env python# coding=UTF-8'''@Description: @Author: HuangQinJian@LastEditors: HuangQinJian@Date: 2019-04-23 11:28:23@LastEditTime: 2019-05-01 13:15:57'''import sysimport osimport jsonimport cv2import pandas as pdSTART_BOUNDING_BOX_ID = 1PRE_DEFINE_CATEGORIES = {}def convert(csv_path, img_path, json_file):    """    csv_path : csv文件的路径    img_path : 存放图片的文件夹    json_file : 保存生成的json文件路径    """    json_dict = {"images": [], "type": "instances", "annotations": [],                 "categories": []}    bnd_id = START_BOUNDING_BOX_ID    categories = PRE_DEFINE_CATEGORIES    csv = pd.read_csv(csv_path)    img_nameList = os.listdir(img_path)    img_num = len(img_nameList)    print("图片总数为{0}".format(img_num))    for i in range(img_num):        # for i in range(30):        image_id = i+1        img_name = img_nameList[i]        if img_name == '60f3ea2534804c9b806e7d5ae1e229cf.jpg' or img_name == '6b292bacb2024d9b9f2d0620f489b1e4.jpg':            continue        # 可能需要根据具体格式修改的地方        lines = csv[csv.filename == img_name]        img = cv2.imread(os.path.join(img_path, img_name))        height, width, _ = img.shape        image = {'file_name': img_name, 'height': height, 'width': width,                 'id': image_id}        print(image)        json_dict['images'].append(image)        for j in range(len(lines)):            # 可能需要根据具体格式修改的地方            category = str(lines.iloc[j]['type'])            if category not in categories:                new_id = len(categories)                categories[category] = new_id            category_id = categories[category]            # 可能需要根据具体格式修改的地方            xmin = int(lines.iloc[j]['X1'])            ymin = int(lines.iloc[j]['Y1'])            xmax = int(lines.iloc[j]['X3'])            ymax = int(lines.iloc[j]['Y3'])            # print(xmin, ymin, xmax, ymax)            assert(xmax > xmin)            assert(ymax > ymin)            o_width = abs(xmax - xmin)            o_height = abs(ymax - ymin)            ann = {'area': o_width*o_height, 'iscrowd': 0, 'image_id':                   image_id, 'bbox': [xmin, ymin, o_width, o_height],                   'category_id': category_id, 'id': bnd_id, 'ignore': 0,                   'segmentation': []}            json_dict['annotations'].append(ann)            bnd_id = bnd_id + 1    for cate, cid in categories.items():        cat = {'supercategory': 'none', 'id': cid, 'name': cate}        json_dict['categories'].append(cat)    json_fp = open(json_file, 'w')    json_str = json.dumps(json_dict, indent=4)    json_fp.write(json_str)    json_fp.close()if __name__ == '__main__':    # csv_path = 'data/train_label_fix.csv'    # img_path = 'data/train/'    # json_file = 'train.json'    csv_path = 'train_label_fix.csv'    img_path = 'trained/'    json_file = 'trained.json'    convert(csv_path, img_path, json_file)    csv_path = 'train_label_fix.csv'    img_path = 'val/'    json_file = 'val.json'    convert(csv_path, img_path, json_file)

第三步,可视化转换后的coco的格式,以确保转换正确,代码如下:

(注意:在这一步中,需要先下载 cocoapi , 可能出现的 问题)

#!/usr/bin/env python# coding=UTF-8'''@Description: @Author: HuangQinJian@LastEditors: HuangQinJian@Date: 2019-04-23 13:43:24@LastEditTime: 2019-04-30 21:29:26'''from pycocotools.coco import COCOimport skimage.io as ioimport matplotlib.pyplot as pltimport pylabimport cv2import osfrom skimage.io import imsaveimport numpy as nppylab.rcParams['figure.figsize'] = (8.0, 10.0)img_path = 'data/train/'annFile = 'train.json'if not os.path.exists('anno_image_coco/'):    os.makedirs('anno_image_coco/')def draw_rectangle(coordinates, image, image_name):    for coordinate in coordinates:        left = np.rint(coordinate[0])        right = np.rint(coordinate[1])        top = np.rint(coordinate[2])        bottom = np.rint(coordinate[3])        # 左上角坐标, 右下角坐标        cv2.rectangle(image,                      (int(left), int(right)),                      (int(top), int(bottom)),                      (0, 255, 0),                      2)    imsave('anno_image_coco/'+image_name, image)# 初始化标注数据的 COCO apicoco = COCO(annFile)# display COCO categories and supercategoriescats = coco.loadCats(coco.getCatIds())nms = [cat['name'] for cat in cats]# print('COCO categories: \n{}\n'.format(' '.join(nms)))nms = set([cat['supercategory'] for cat in cats])# print('COCO supercategories: \n{}'.format(' '.join(nms)))img_path = 'data/train/'img_list = os.listdir(img_path)# for i in range(len(img_list)):for i in range(7):    imgIds = i+1    img = coco.loadImgs(imgIds)[0]    image_name = img['file_name']    # print(img)    # 加载并显示图片    # I = io.imread('%s/%s' % (img_path, img['file_name']))    # plt.axis('off')    # plt.imshow(I)    # plt.show()    # catIds=[] 说明展示所有类别的box,也可以指定类别    annIds = coco.getAnnIds(imgIds=img['id'], catIds=[], iscrowd=None)    anns = coco.loadAnns(annIds)    # print(anns)    coordinates = []    img_raw = cv2.imread(os.path.join(img_path, image_name))    for j in range(len(anns)):        coordinate = []        coordinate.append(anns[j]['bbox'][0])        coordinate.append(anns[j]['bbox'][1]+anns[j]['bbox'][3])        coordinate.append(anns[j]['bbox'][0]+anns[j]['bbox'][2])        coordinate.append(anns[j]['bbox'][1])        # print(coordinate)        coordinates.append(coordinate)    # print(coordinates)    draw_rectangle(coordinates, img_raw, image_name)

三、文件配置

在训练自己的数据集过程中需要修改的地方可能很多,下面我就列出常用的几个:

  • 修改maskrcnn_benchmark/config/paths_catalog.py中数据集路径:
class DatasetCatalog(object):    # 看自己的实际情况修改路径!!!    # 看自己的实际情况修改路径!!!    # 看自己的实际情况修改路径!!!    DATA_DIR = ""    DATASETS = {        "coco_2017_train": {            "img_dir": "coco/train2017",            "ann_file": "coco/annotations/instances_train2017.json"        },        "coco_2017_val": {            "img_dir": "coco/val2017",            "ann_file": "coco/annotations/instances_val2017.json"        },        # 改成训练集所在路径!!!        # 改成训练集所在路径!!!        # 改成训练集所在路径!!!        "coco_2014_train": {            "img_dir": "/data1/hqj/traffic-sign-identification/trained",            "ann_file": "/data1/hqj/traffic-sign-identification/trained.json"        },        # 改成验证集所在路径!!!        # 改成验证集所在路径!!!        # 改成验证集所在路径!!!        "coco_2014_val": {            "img_dir": "/data1/hqj/traffic-sign-identification/val",            "ann_file": "/data1/hqj/traffic-sign-identification/val.json"        },        # 改成测试集所在路径!!!        # 改成测试集所在路径!!!        # 改成测试集所在路径!!!        "coco_2014_test": {            "img_dir": "/data1/hqj/traffic-sign-identification/test"        ...
  • config下的配置文件:

由于这个文件下的参数很多,往往需要根据自己的具体需求改,我就列出自己的配置(使用的是e2e_faster_rcnn_X_101_32x8d_FPN_1x.yaml其中我有注释的必须改,比如 NUM_CLASSES):

INPUT:  MIN_SIZE_TRAIN: (1000,)  MAX_SIZE_TRAIN: 1667  MIN_SIZE_TEST: 1000  MAX_SIZE_TEST: 1667MODEL:  META_ARCHITECTURE: "GeneralizedRCNN"  WEIGHT: "catalog://ImageNetPretrained/FAIR/20171220/X-101-32x8d"  BACKBONE:    CONV_BODY: "R-101-FPN"  RPN:    USE_FPN: True    BATCH_SIZE_PER_IMAGE: 128    ANCHOR_SIZES: (16, 32, 64, 128, 256)    ANCHOR_STRIDE: (4, 8, 16, 32, 64)    PRE_NMS_TOP_N_TRAIN: 2000    PRE_NMS_TOP_N_TEST: 1000    POST_NMS_TOP_N_TEST: 1000    FPN_POST_NMS_TOP_N_TEST: 1000    FPN_POST_NMS_TOP_N_TRAIN: 1000    ASPECT_RATIOS : (1.0,)  FPN:    USE_GN: True  ROI_HEADS:    # 是否使用FPN    USE_FPN: True  ROI_BOX_HEAD:    USE_GN: True    POOLER_RESOLUTION: 7    POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125)    POOLER_SAMPLING_RATIO: 2    FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor"    PREDICTOR: "FPNPredictor"    # 修改成自己任务所需要检测的类别数+1    NUM_CLASSES: 22  RESNETS:    BACKBONE_OUT_CHANNELS: 256    STRIDE_IN_1X1: False    NUM_GROUPS: 32    WIDTH_PER_GROUP: 8DATASETS:  # paths_catalog.py文件中的配置,数据集指定时如果仅有一个数据集不要忘了逗号(如:("coco_2014_val",))  TRAIN: ("coco_2014_train",)  TEST: ("coco_2014_val",)DATALOADER:  SIZE_DIVISIBILITY: 32SOLVER:  BASE_LR: 0.001  WEIGHT_DECAY: 0.0001  STEPS: (240000, 320000)  MAX_ITER: 360000  # 很重要的设置,具体可以参见官网说明:https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/README.md  IMS_PER_BATCH: 1  # 保存模型的间隔  CHECKPOINT_PERIOD: 18000# 输出文件路径OUTPUT_DIR: "./weight/"
  • 如果只做检测任务的话,删除 maskrcnn-benchmark/maskrcnn_benchmark/data/datasets/coco.py 中 82-84这三行比较保险。

  • maskrcnn_benchmark/engine/trainer.py 中 第 90 行可设置输出日志的间隔(默认20,我感觉输出太频繁,看你自己)

四、模型训练

  • 单GPU

官网给出的是:

python /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "/path/to/config/file.yaml"

但是这个默认会使用第一个GPU,如果想指定GPU的话,可以使用以下命令:

# 3是要使用GPU的IDCUDA_VISIBLE_DEVICES=3 python /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "/path/to/config/file.yaml"

如果出现内存溢出的情况,这时候就需要调整参数,具体可以参见官网:内存溢出解决

  • 多GPU

官网给出的是:

export NGPUS=8python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "path/to/config/file.yaml" MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN images_per_gpu x 1000

但是这个默认会随机使用GPU,如果想指定GPU的话,可以使用以下命令:

# --nproc_per_node=4 是指使用GPU的数目为4CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4  /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "path/to/config/file.yaml"

遗憾的是,多GPU在我的服务器上一直运行不成功,还请大家帮忙解决!!!

问题地址:Multi-GPU training error


五、模型验证

  • 修改 config 配置文件中 WEIGHT: "../weight/model_final.pth"(此处应为训练完保存的权重)
  • 运行命令:
CUDA_VISIBLE_DEVICES=5 python tools/test_net.py --config-file "/path/to/config/file.yaml" TEST.IMS_PER_BATCH 8

其中TEST.IMS_PER_BATCH 8也可以在config文件中直接配置:

TEST:  IMS_PER_BATCH: 8

六、模型预测

  • 修改 config 配置文件中 WEIGHT: "../weight/model_final.pth"(此处应为训练完保存的权重)
  • 修改demo/predictor.py中 CATEGORIES ,替换成自己数据的物体类别(如果想可视化结果,没有可以不改,可以参考demo/下面的例子):
class COCODemo(object):    # COCO categories for pretty print    CATEGORIES = [        "__background",        ...    ]
  • 新建一个文件 demo/predict.py(需要修改的地方已做注释)
#!/usr/bin/env python# coding=UTF-8'''@Description:@Author: HuangQinJian@LastEditors: HuangQinJian@Date: 2019-05-01 12:36:04@LastEditTime: 2019-05-03 17:29:23'''import osimport matplotlib.pylab as pylabimport matplotlib.pyplot as pltimport numpy as npimport pandas as pdfrom PIL import Imagefrom maskrcnn_benchmark.config import cfgfrom predictor import COCODemofrom tqdm import tqdm# this makes our figures biggerpylab.rcParams['figure.figsize'] = 20, 12# 替换成自己的配置文件# 替换成自己的配置文件# 替换成自己的配置文件config_file = "../configs/e2e_faster_rcnn_R_50_FPN_1x.yaml"# update the config options with the config filecfg.merge_from_file(config_file)# manual override some optionscfg.merge_from_list(["MODEL.DEVICE", "cuda"])def load(img_path):    pil_image = Image.open(img_path).convert("RGB")    # convert to BGR format    image = np.array(pil_image)[:, :, [2, 1, 0]]    return image# 根据自己的需求改# 根据自己的需求改# 根据自己的需求改coco_demo = COCODemo(    cfg,    min_image_size=1600,    confidence_threshold=0.7,)# 测试图片的路径# 测试图片的路径# 测试图片的路径imgs_dir = '/data1/hqj/traffic-sign-identification/test'img_names = os.listdir(imgs_dir)submit_v4 = pd.DataFrame()empty_v4 = pd.DataFrame()filenameList = []X1List = []X2List = []X3List = []X4List = []Y1List = []Y2List = []Y3List = []Y4List = []TypeList = []empty_img_name = []# for img_name in img_names:for i, img_name in enumerate(tqdm(img_names)):    path = os.path.join(imgs_dir, img_name)    image = load(path)    # compute predictions    predictions = coco_demo.compute_prediction(image)    try:        scores = predictions.get_field("scores").numpy()        bbox = predictions.bbox[np.argmax(scores)].numpy()        labelList = predictions.get_field("labels").numpy()        label = labelList[np.argmax(scores)]        filenameList.append(img_name)        X1List.append(round(bbox[0]))        Y1List.append(round(bbox[1]))        X2List.append(round(bbox[2]))        Y2List.append(round(bbox[1]))        X3List.append(round(bbox[2]))        Y3List.append(round(bbox[3]))        X4List.append(round(bbox[0]))        Y4List.append(round(bbox[3]))        TypeList.append(label)        # print(filenameList, X1List, X2List, X3List, X4List, Y1List,        #       Y2List, Y3List, Y4List, TypeList)        print(label)    except:        empty_img_name.append(img_name)        print(empty_img_name)submit_v4['filename'] = filenameListsubmit_v4['X1'] = X1Listsubmit_v4['Y1'] = Y1Listsubmit_v4['X2'] = X2Listsubmit_v4['Y2'] = Y2Listsubmit_v4['X3'] = X3Listsubmit_v4['Y3'] = Y3Listsubmit_v4['X4'] = X4Listsubmit_v4['Y4'] = Y4Listsubmit_v4['type'] = TypeListempty_v4['filename'] = empty_img_namesubmit_v4.to_csv('submit_v4.csv', index=None)empty_v4.to_csv('empty_v4.csv', index=None)
  • 运行命令:
CUDA_VISIBLE_DEVICES=5  python demo/predict.py

七、结束语

1. 若有修改maskrcnn-benchmark文件夹下的代码,一定要重新编译!一定要重新编译!一定要重新编译!

2. 更多精彩内容,欢迎前往我的 CSDN