本篇为鸡生蛋系列第二篇文章

  1. Linux input系统数据上报流程 https://segmentfault.com/a/11...
  2. Android InputManager分析

主要讲一下inputmanager相关的,即驱动把数据上报到用户空间后,用户空间到应用这么个流程,
在上一遍讲内核的input子系统时候,我们采取的反向分析,即由驱动出发,最后到input core,input子系统架构这么个由点到面的分析方法,
那分析inputmanager是否可采用这种方法如何呢?实际上,对于Android上层(Native framework/framework, c++/java)的分析,我一般
采用的是由上而下的分析,即从其初始化(main,构造,onFirstRef())开始, 通常在其初始化时候,会重一些很重要的上下层的连接,如果由下往上看,会麻烦点,
然后再结合实例,看看他的数据流向是如何的,或者一些重要的API, 例如对于Audio来说,可以结合播放音乐流程来分析整个系统架构。

简单说来,input到应用的流程为
EventHub监控并读取/dev/input下数据 --> 给InputReader 加工处理 --> 到InputDispacher --> 找到focused窗口并通过input channel发出去

参考文档:
十分钟了解Android触摸事件原理(InputManagerService)
https://www.jianshu.com/p/f05...
android控件系统:输入事件在控件树中的传递
https://blog.csdn.net/renshug...
https://blog.csdn.net/renshug...
InputManagerService分析一:IMS的启动与事件传递
https://blog.csdn.net/lilian0...

相关代码目录:
Android 9.0 http://androidxref.com/9.0.0_r3/
frameworks/base/services/java/com/android/server/SystemServer.java
frameworks/base/services/core/java/com/android/server/input/InputManagerService.java
frameworks/base/services/core/jni/com_android_server_input_InputManagerService.cpp
frameworks/native/services/inputflinger/

1.1 初始化

frameworks/base/services/java/com/android/server/SystemServer.javastartOtherServices() {    inputManager = new InputManagerService(context);    ....    wm = WindowManagerService.main(context, inputManager,    ServiceManager.addService(Context.INPUT_SERVICE, inputManager,            /* allowIsolated= */ false, DUMP_FLAG_PRIORITY_CRITICAL);    ....    inputManager.setWindowManagerCallbacks(wm.getInputMonitor());    inputManager.start();    ......}

IMS(InputManagerService)的初始化,是从SystemServer开始的,通过搜索代码(如上),我们可以看到构造了一个实例,
并做为参数传给了WMS, 由此我们也猜想,会和WMS有紧密的关系,然后
IMS设置了setWindowManagerCallbacks()并通过start()函数启动了,
SystemServer里有关IMS的就这么几个地方,我们再看下构造和start()具体的流程,与WMS的关联不分析。

frameworks/base/services/core/java/com/android/server/input/InputManagerService.java// Pointer to native input manager service object.private final long mPtr;public InputManagerService(Context context) {    this.mContext = context;    this.mHandler = new InputManagerHandler(DisplayThread.get().getLooper());    // config_useDevInputEventForAudioJack配置为true, 耳机事件可通过input上报    mUseDevInputEventForAudioJack =            context.getResources().getBoolean(R.bool.config_useDevInputEventForAudioJack);......    mPtr = nativeInit(this, mContext, mHandler.getLooper().getQueue());......    LocalServices.addService(InputManagerInternal.class, new LocalService());}public void start() {    Slog.i(TAG, "Starting input manager");    nativeStart(mPtr);....}

InputManagerService构造和start()主要也是调到JNI的 nativeInit() nativeStart().

frameworks/base/services/core/jni/com_android_server_input_InputManagerService.cppstatic jlong nativeInit(JNIEnv* env, jclass /* clazz */,        jobject serviceObj, jobject contextObj, jobject messageQueueObj) {....    NativeInputManager* im = new NativeInputManager(contextObj, serviceObj,            messageQueue->getLooper());    im->incStrong(0);    return reinterpret_cast<jlong>(im);}static void nativeStart(JNIEnv* env, jclass /* clazz */, jlong ptr) {......    status_t result = im->getInputManager()->start();......}

nativeInit()又构造了一个 NativeInputManager(),该类可认为是上层JAVA和下层EventHub InputManager的桥梁,
nativeStart()通过 NativeInputManager最终调到 InputManager 的 start()方法

NativeInputManager::NativeInputManager(jobject contextObj,        jobject serviceObj, const sp<Looper>& looper) :        mLooper(looper), mInteractive(true) {......    sp<EventHub> eventHub = new EventHub();    mInputManager = new InputManager(eventHub, this, this);}

NativeInputManager()的构造又new了 EventHub 和 InputManager , 其中
eventHub做为参数传给了 InputManager()

frameworks/native/services/inputflinger/EventHub.cppEventHub::EventHub(void) :......{    acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);    mEpollFd = epoll_create(EPOLL_SIZE_HINT); // epoll机制    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);    mINotifyFd = inotify_init(); // inotify机制    int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); // 利用inotify监控 DEVICE_PATH(/dev/input)创建和删除......    eventItem.events = EPOLLIN;    eventItem.data.u32 = EPOLL_ID_INOTIFY;    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); // 将inotify的fd添加到Epoll监控中    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);    int wakeFds[2];    result = pipe(wakeFds); //读写pipe, InputReader有事件时唤醒    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);    mWakeReadPipeFd = wakeFds[0];    mWakeWritePipeFd = wakeFds[1];......    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);......}

EventHub相当于一个集线器,把底层的USB, TOUCH,鼠标等事件统一收集上来,再给上层。
其构造函数当中利用inotify机制监控"/dev/input" 目录下设备的创建和删除,这样当有设备变更时就可以收到通知了,
构造函数也创建了所需要的mEpollFd,这个作为IO多路复用的机制,不清楚的可以查下如何使用,
构造里将mINotifyFd添加到了epoll里,在后续input设备创建的时候,也会把input设备的fd添加进去,这样当有数据或者设备变化时,
EventHub就可获取这些事件,进一步处理。
构造还创建了两个pipe,作为wakeup的读端和写端,当InputReader.cpp有事件(配置变更,monitor, 超时请求等)唤醒EventHub处理。

InputManager::InputManager(        const sp<EventHubInterface>& eventHub,        const sp<InputReaderPolicyInterface>& readerPolicy,        const sp<InputDispatcherPolicyInterface>& dispatcherPolicy) {    mDispatcher = new InputDispatcher(dispatcherPolicy);    mReader = new InputReader(eventHub, readerPolicy, mDispatcher); // eventHub又传给了 InputReader,最终他们俩是紧密联系在一起的    initialize(); // eventHub又传给了}void InputManager::initialize() {    mReaderThread = new InputReaderThread(mReader);    mDispatcherThread = new InputDispatcherThread(mDispatcher);}

InputManager(),创建了InputDispatcher和InputReader实例并与对应的InputDispatcherThread InputReaderThread 线程关联
具体的我们不往下跟了,有兴趣的可以再看看,
至此,初始化流程告一段落。

InputManagerService.java的 start方法,最终到InputManager::start(),

status_t InputManager::start() {    status_t result = mDispatcherThread->run("InputDispatcher", PRIORITY_URGENT_DISPLAY);......    result = mReaderThread->run("InputReader", PRIORITY_URGENT_DISPLAY);......}

start() 方法目的就是让这两个线程跑起来,这样就可以不断的获取,处理消息了。

1.2 小结

startOtherServices()/SystemServer.java    + new InputManagerService(context) --> nativeInit(...) --> new NativeInputManager(...)    +                                                              + new EventHub() --> inotify监控/dev/input + epoll + wake pipe    +                                                              + new InputManager(eventHub,...)    +                                                                  +  new InputDispatcher()    +                                                                  +  new InputReader(eventHub,...)    +                                                                  +  initialize()    +                                                                          + new InputReaderThread(mReader)    +                                                                          + new InputDispatcherThread(mDispatcher)    +    +                                                                                          ^    +                                                                                          +    + inputManager.start() --> nativeStart(mPtr) --> im->getInputManager()->start() --> mDispatcherThread->run() mReaderThread->run()

2. 读取数据

bool InputReaderThread::threadLoop() {    mReader->loopOnce();    return true;}bool InputDispatcherThread::threadLoop() {    mDispatcher->dispatchOnce();    return true;}

上一小节讲到IMS通过start()函数,最终让InputReaderThread InputDispatcherThread两个线程跑起来了,
线程跑起来后,他们因为返回值为true, 所以他们会不断的loop, 即不断的读取,分发,读取,分发……
看上面几行代码,觉得整个过程很简单清晰,然而当我们继续跟下去看细节的时候,你能 哇~~哇~~哇~~
这一节我们看看 mReader->loopOnce(), 下一节继续看Dispatcher过程

void InputReader::loopOnce() {......    size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);......        if (count) {            processEventsLocked(mEventBuffer, count);        }......// 通知dispather分发    mQueuedListener->flush();}

InputReader的loopOnce()通过
EventHub getEvents()
获得元数据,然后通过
processEventsLocked()
进一步的处理,
然后再通过
mQueuedListener->flush()
通知InputDispatcher有数据了,该处理了

2.1 InputReader::loopOnce()之 EventHub->getEvents()

size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {......   for (;;) {       nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);       // Reopen input devices if needed.......       // Report any devices that had last been added/removed.       while (mClosingDevices) {......       }       // 扫描设备       if (mNeedToScanDevices) {           mNeedToScanDevices = false;           scanDevicesLocked();           mNeedToSendFinishedDeviceScan = true;       }......       // Grab the next input event.       bool deviceChanged = false;       while (mPendingEventIndex < mPendingEventCount) {           const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];......           ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);......           Device* device = mDevices.valueAt(deviceIndex);           if (eventItem.events & EPOLLIN) { //epoll事件               // 读取数据               int32_t readSize = read(device->fd, readBuffer,                       sizeof(struct input_event) * capacity);......                       event->deviceId = deviceId; // <-- 设备id                       event->type = iev.type;                       event->code = iev.code;                       event->value = iev.value;                       event += 1;......       // Return now if we have collected any events or if we were explicitly awoken.       if (event != buffer || awoken) {           break;       }       // Poll for events.  Mind the wake lock dance!......        int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);......    return event - buffer;}

getEvents()会检查是否需要扫描设备,如果需要的话,则会建立设备KeyedVector向量表,
之后若有数据到来则通过read()函数读取数据, 返回RawEvent* buffer给processEventsLocked()进行下一步处理,
若啥事都没有通过epoll_wait()阻塞等待。

本来数据的读取(read())比较简单, 这里只列下设备扫描流程,作为个人笔记,有兴趣的可以看下

EventHub::scanDevicesLocked() --> scanDirLocked(DEVICE_PATH) "/dev/input" --> while处理 openDeviceLocked() -->status_t EventHub::openDeviceLocked(const char *devicePath) {......    int fd = open(devicePath, O_RDWR | O_CLOEXEC | O_NONBLOCK);......//一大堆ioctl的信息获取    if(ioctl(......)) {......//生成唯一的 deviceId,和device, 做为mdevices的 key, value. 以后的操作会常用到这个deviceId    // Allocate device.  (The device object takes ownership of the fd at this point.)    int32_t deviceId = mNextDeviceId++;    Device* device = new Device(fd, deviceId, String8(devicePath), identifier);......    // Load the configuration file for the device.    // 加载这个设备的 idc(Input Device Configuration)配置文件    loadConfigurationLocked(device);......//能力获取和分类    // Figure out the kinds of events the device reports.    ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);    ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);    ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);...... // 设备分类        device->classes |= ......;......    //加入到epoll当中    if (registerDeviceForEpollLocked(device) != OK) {......    configureFd(device);......//加入mDevices并更新 mOpeningDevices 链表    addDeviceLocked(device);    return OK;}
// 对于我们的触屏来说class为// See if this is a touch pad.// Is this a new modern multi-touch driver?if (test_bit(ABS_MT_POSITION_X, device->absBitmask)        && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {......    if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {        device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;    }......//之后还会加载虚拟key.// Configure virtual keys.if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {    // Load the virtual keys for the touch screen, if any.    // We do this now so that we can make sure to load the keymap if necessary.    status_t status = loadVirtualKeyMapLocked(device);status_t EventHub::loadVirtualKeyMapLocked(Device* device) {    // The virtual key map is supplied by the kernel as a system board property file.......    path.append("/sys/board_properties/virtualkeys.");    path.append(device->identifier.name);......    return VirtualKeyMap::load(path, &device->virtualKeyMap);

addDeviceLocked()即添加到
EventHub.h KeyedVector<int32_t, Device*> mDevices;
并更新链表mOpeningDevices

void EventHub::addDeviceLocked(Device* device) {    mDevices.add(device->id, device);    device->next = mOpeningDevices;    mOpeningDevices = device;}

另外要注意一点的是,在scanDevicesLocked()时候也会创建虚拟键盘。

void EventHub::scanDevicesLocked() {    status_t res = scanDirLocked(DEVICE_PATH);.......    // 创建虚拟键盘    if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {        createVirtualKeyboardLocked();    }}

2.2 InputReader::loopOnce()之 processEventsLocked

mEventHub->getEvents(), 反回元数据后,传给 processEventsLocked()进一步处理
元数据的定义如下,主要记录了时间,设备id, type, code, value.

struct RawEvent {    nsecs_t when;    int32_t deviceId;    int32_t type;    int32_t code;    int32_t value;};

其中的deviceId起了个连接作用,用于标识eventhub和iputreader中的设备,

void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {    for (const RawEvent* rawEvent = rawEvents; count;) {        int32_t type = rawEvent->type;        size_t batchSize = 1;        if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {            int32_t deviceId = rawEvent->deviceId;......            processEventsForDeviceLocked(deviceId, rawEvent, batchSize);......            case EventHubInterface::DEVICE_ADDED:                addDeviceLocked(rawEvent->when, rawEvent->deviceId);            case EventHubInterface::DEVICE_REMOVED:            ......            case EventHubInterface::FINISHED_DEVICE_SCAN:            ......    }}

processEventsLocked()函数有个
processEventsForDeviceLocked() 对于对数据的处理,
另外还根据type, 处理了对设备添加移除,扫描的处理,
大家就有点奇怪了,咦,eventhub扫描设备的时候,不是有处理添加设备吗?
咋这儿又有添加设备了? 而且看代码,两者都有个mDevices变量

EventHub.h KeyedVector<int32_t, Device*> mDevices;InputReader.h KeyedVector<int32_t, InputDevice*> mDevices;

上面可看到两者value类型不同,他们之间的key 即deviceID是相同的,
其实我个人认为EventHub中的Device为设备的本身属性,是下层设备的实例化,
而InputReader中的InputDevice为更高层次的抽象,主要用于往上层处理数据,
addDeviceLocked()过程中还会根据input设备的不同属性设置不同的Mapper事件转换器。

我们先看下processEventsForDeviceLocked()过程:

void InputReader::processEventsForDeviceLocked(int32_t deviceId,        const RawEvent* rawEvents, size_t count) {    ssize_t deviceIndex = mDevices.indexOfKey(deviceId);......    InputDevice* device = mDevices.valueAt(deviceIndex);......    device->process(rawEvents, count);}void InputDevice::process(const RawEvent* rawEvents, size_t count) {    // Process all of the events in order for each mapper.......    // 可能会有多个mapper    size_t numMappers = mMappers.size();    for (const RawEvent* rawEvent = rawEvents; count != 0; rawEvent++) {......            for (size_t i = 0; i < numMappers; i++) {                InputMapper* mapper = mMappers[i];                mapper->process(rawEvent);            }......}

processEventsForDeviceLocked() --> device->process() --> mapper->process()
最终数据的处理也是通过mapper来处理的,所以我们还得看下mapper咋添加的

Mapper添加

mapper的添加是根据分类来添加的, 以触屏为例

frameworks/native/services/inputflinger/InputReader.cppInputReader::processEventsLocked() --> addDeviceLocked() --> createDeviceLocked() --> // Touchscreens and touchpad devices.if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {    device->addMapper(new MultiTouchInputMapper(device));} else if (classes & INPUT_DEVICE_CLASS_TOUCH) {    device->addMapper(new SingleTouchInputMapper(device));}

所以触屏的最后数据处理函数会调到
MultiTouchInputMapper的process函数不再详细看

void MultiTouchInputMapper::process(const RawEvent* rawEvent) {    TouchInputMapper::process(rawEvent);    mMultiTouchMotionAccumulator.process(rawEvent);}

2.3 InputReader数据如何到InputDispatcher的?

InputReader::loopOnce() 数据处理完后便调用 mQueuedListener->flush() 通知 InputDispatcher 该处理数据了。

void QueuedInputListener::flush() {    size_t count = mArgsQueue.size();    for (size_t i = 0; i < count; i++) {        NotifyArgs* args = mArgsQueue[i];        args->notify(mInnerListener);        delete args;    }    mArgsQueue.clear();}

flush()方法即把mArgsQueue Vector一个个取出来,然后再调用notify()方法,
那我们肯定想要知道
1. 数据是咋压入 mArgsQueue的?
2. notify() 后续流程咋把数据给到 InputDispatcher
1.

void QueuedInputListener::notifyConfigurationChanged(        const NotifyConfigurationChangedArgs* args) {    mArgsQueue.push(new NotifyConfigurationChangedArgs(*args));}void QueuedInputListener::notifyKey(const NotifyKeyArgs* args) {    mArgsQueue.push(new NotifyKeyArgs(*args));}void QueuedInputListener::notifyMotion(const NotifyMotionArgs* args) {    mArgsQueue.push(new NotifyMotionArgs(*args));}void QueuedInputListener::notifySwitch(const NotifySwitchArgs* args) {    mArgsQueue.push(new NotifySwitchArgs(*args));}void QueuedInputListener::notifyDeviceReset(const NotifyDeviceResetArgs* args) {    mArgsQueue.push(new NotifyDeviceResetArgs(*args));}

在QueuedInputListener中看到 notifyConfigurationChanged() notifyKey() notifyMotion() notifySwitch() notifyDeviceReset()
当有配置变化或事件时,都会新创建个notify args实例(都继承自NotifyArgs),然后push到mArgsQueue,
以触屏事件为例,push流程为:

TouchInputMapper::sync() --> processRawTouches() --> cookAndDispatch() --> dispatchTouches() --> dispatchMotion()--> NotifyMotionArgs args(...) getListener()->notifyMotion(&args) -->frameworks/native/services/inputflinger/InputListener.cppvoid QueuedInputListener::notifyMotion(const NotifyMotionArgs* args) {    mArgsQueue.push(new NotifyMotionArgs(*args));}
  1. InputReader::loopOnce() --> QueuedInputListener::flush() --> for args->notify(mInnerListener);

以触屏NotifyMotionArgs为例,其调用到

void NotifyMotionArgs::notify(const sp<InputListenerInterface>& listener) const {    listener->notifyMotion(this);}

注意其 listener 为 InputDispatcher (InputDispatcher 继承自 InputDispatcherInterface class InputDispatcher : public InputDispatcherInterface),

frameworks/native/services/inputflinger/InputManager.cppmDispatcher = new InputDispatcher(dispatcherPolicy); mReader = new InputReader(..., ..., mDispatcher); --> InputReader::InputReader(..., ..., ...listener) --> new QueuedInputListener(listener);

所以最终就调到了
InputDispatcher::notifyMotion()

void InputDispatcher::notifyMotion(const NotifyMotionArgs* args) {......// 合法性检查    if (!validateMotionEvent(args->action, args->actionButton,                args->pointerCount, args->pointerProperties)) {......// 预处理    mPolicy->interceptMotionBeforeQueueing(args->eventTime, /*byref*/ policyFlags);......        if (shouldSendMotionToInputFilterLocked(args)) {            mLock.unlock();            MotionEvent event;            event.initialize(args->deviceId, args->source, args->action, args->actionButton,                    args->flags, args->edgeFlags, args->metaState, args->buttonState,                    0, 0, args->xPrecision, args->yPrecision,                    args->downTime, args->eventTime,                    args->pointerCount, args->pointerProperties, args->pointerCoords);            policyFlags |= POLICY_FLAG_FILTERED;            // 过滤            if (!mPolicy->filterInputEvent(&event, policyFlags)) {                return; // event was consumed by the filter            }            mLock.lock();        }        // Just enqueue a new motion event.        MotionEntry* newEntry = new MotionEntry(args->eventTime,                args->deviceId, args->source, policyFlags,                args->action, args->actionButton, args->flags,                args->metaState, args->buttonState,                args->edgeFlags, args->xPrecision, args->yPrecision, args->downTime,                args->displayId,                args->pointerCount, args->pointerProperties, args->pointerCoords, 0, 0);        // 入队        needWake = enqueueInboundEventLocked(newEntry);        mLock.unlock();    } // release lock    if (needWake) {        // 唤醒        mLooper->wake();    }}

notifyMotion()会先检查合法性,然后预处理,如果需要过滤则进行过滤处理,
否则构建 MotionEntry,并入队,随后将looper唤醒。

bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {    bool needWake = mInboundQueue.isEmpty();    // 入队    mInboundQueue.enqueueAtTail(entry);......}

InputReader这一侧大至就分析完了,数据从InputReader传到InputDispatcher也清楚了,
接下来看看数据分发。

3. 分发数据

在开头也讲到,InputDispatcherThread里不断的loop,调用dispatchOnce()进行数据的分发。

frameworks/native/services/inputflinger/InputDispatcher.cppvoid InputDispatcher::dispatchOnce() {......        // Run a dispatch loop if there are no pending commands.        // The dispatch loop might enqueue commands to run afterwards.        if (!haveCommandsLocked()) {            // 如果命令列队为空, 进行事件分发            dispatchOnceInnerLocked(&nextWakeupTime);        }    //如果looper里没有信息,会阻塞,直到timeoutMillis超时    mLooper->pollOnce(timeoutMillis);}

dispatchOnce()里如果命令处理完了,才会调用dispatchOnceInnerLocked()进行事件处理。

void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {.....//如果没有event,抓取一个  // Ready to start a new event.  // If we don't already have a pending event, go grab one.  if (! mPendingEvent) {      if (mInboundQueue.isEmpty()) {......      } else {          // Inbound queue has at least one entry.          mPendingEvent = mInboundQueue.dequeueAtHead(); //<---从mInboundQueue队头抓个          traceInboundQueueLengthLocked();      }......//一些错误处理,包括anr时间重置,略过    switch (mPendingEvent->type) {    case EventEntry::TYPE_CONFIGURATION_CHANGED: ....    case EventEntry::TYPE_DEVICE_RESET: ....    case EventEntry::TYPE_KEY: ...........//对我们的touch来说是motion事件    case EventEntry::TYPE_MOTION: {        MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);        if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) {            dropReason = DROP_REASON_APP_SWITCH;        }        if (dropReason == DROP_REASON_NOT_DROPPED                && isStaleEventLocked(currentTime, typedEntry)) {            dropReason = DROP_REASON_STALE;        }        if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {            dropReason = DROP_REASON_BLOCKED;        }        //分发事件        done = dispatchMotionLocked(currentTime, typedEntry,                &dropReason, nextWakeupTime);        break;    }......}

dispatchOnceInnerLocked从mInboundQueue队列中取出之前的MotionEntry,
然后错误处理,对于触屏事件做dispatchMotionLocked()

bool InputDispatcher::dispatchMotionLocked(        nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime) {......// 是否为 point event    bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;    // Identify targets.    Vector<InputTarget> inputTargets;......    if (isPointerEvent) {        // Pointer event.  (eg. touchscreen)        injectionResult = findTouchedWindowTargetsLocked(currentTime,                entry, inputTargets, nextWakeupTime, &conflictingPointerActions);    } else {        // Non touch event.  (eg. trackball)        injectionResult = findFocusedWindowTargetsLocked(currentTime,                entry, inputTargets, nextWakeupTime);    }......    dispatchEventLocked(currentTime, entry, inputTargets);    return true;}

对于point event,会先用
findTouchedWindowTargetsLocked() 找到目标窗口,否则用
findFocusedWindowTargetsLocked() 找到目标窗口
对我们的触屏来说,包含有该属性
frameworks/native/include/android/input.h
AINPUT_SOURCE_TOUCHSCREEN = 0x00001000 | AINPUT_SOURCE_CLASS_POINTER,
找到目标窗口后,再用 dispatchEventLocked() 发给目标窗口

dispatchEventLocked() --> prepareDispatchCycleLocked() --> enqueueDispatchEntriesLocked()void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,        EventEntry* eventEntry, const Vector<InputTarget>& inputTargets) {......    for (size_t i = 0; i < inputTargets.size(); i++) {        const InputTarget& inputTarget = inputTargets.itemAt(i);        ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);        if (connectionIndex >= 0) {            sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);            prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget);......}void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,......    // Not splitting.  Enqueue dispatch entries for the event as is.    enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,        const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {    bool wasEmpty = connection->outboundQueue.isEmpty();    // Enqueue dispatch entries for the requested modes.    enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,            InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);    enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,            InputTarget::FLAG_DISPATCH_AS_OUTSIDE);    enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,            InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);    enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,            InputTarget::FLAG_DISPATCH_AS_IS);    enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,            InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);    enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,            InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);    // If the outbound queue was previously empty, start the dispatch cycle going.    if (wasEmpty && !connection->outboundQueue.isEmpty()) {        startDispatchCycleLocked(currentTime, connection);    }}

enqueueDispatchEntryLocked()会根据flag mode进行比较,然后加入到connection的outboundQueue里
connection->outboundQueue.enqueueAtTail(dispatchEntry);
然后再调用
startDispatchCycleLocked()最终通过socket把事件发出去

void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,        const sp<Connection>& connection) {......        case EventEntry::TYPE_MOTION: {......            // Publish the motion event.            status = connection->inputPublisher.publishMotionEvent(dispatchEntry->seq,                    motionEntry->deviceId, motionEntry->source, motionEntry->displayId,                    dispatchEntry->resolvedAction, motionEntry->actionButton,                    dispatchEntry->resolvedFlags, motionEntry->edgeFlags,                    motionEntry->metaState, motionEntry->buttonState,                    xOffset, yOffset, motionEntry->xPrecision, motionEntry->yPrecision,                    motionEntry->downTime, motionEntry->eventTime,                    motionEntry->pointerCount, motionEntry->pointerProperties,                    usingCoords);            break;        }......frameworks/native/libs/input/InputTransport.cppstatus_t InputPublisher::publishMotionEvent(......    InputMessage msg;    msg.header.type = InputMessage::TYPE_MOTION;...... // 通过socket发送    return mChannel->sendMessage(&msg);}

4. 数据接收

数据发送后,又被谁接收到了呢?之后流程又如何呢?
input数据主要有两种,一个应用,一个MonitoringChannel,
这里仅简单的列举下,详细的请看看参考文档

4.1 App 接收

对于应用的接收,需要看input channel是咋建立的,
然后看看findTouchedWindowTargetsLocked(),咋找到目录窗口,该函数很复杂,
但有个比较重要的是查询 mWindowHandles, 该变量在setInputWindows()设置,

WindowManagerService.javamInputMonitor.updateInputWindowsLw(false /*force*/); in addWindow()                    -+mInputMonitor.updateInputWindowsLw(true /*force*/); in postWindowRemoveCleanupLocked()  +mInputMonitor.updateInputWindowsLw(true /*force*/); in relayoutWindow()                 +mInputMonitor.updateInputWindowsLw(true /*force*/); in relayoutWindow()                 +--> updateInputWindowsLw() -->mInputMonitor.updateInputWindowsLw(true /*force*/); in removeWindowToken()              +mInputMonitor.updateInputWindowsLw(true /*force*/); in startPositioningLocked()         +mInputMonitor.updateInputWindowsLw(true /*force*/); in startPositioningLocked()         +mInputMonitor.updateInputWindowsLw(true /*force*/); in finishPositioning()             -+InputMonitor.java updateInputWindowsLw()    +--> mUpdateInputForAllWindowsConsumer.updateInputWindows(inDrag)        +--> updateInputWindows()             +--> InputManagerService.java setInputWindows()                 +--> nativeSetInputWindows()                    +--> im->setInputWindows (NativeInputManager::setInputWindows())                         +--> mInputManager->getDispatcher()->setInputWindows()                              +-->void InputDispatcher::setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles) {......        mWindowHandles = inputWindowHandles;

应用添加窗口设置mWindowHandles如上。在addWindow() relayoutWindow()...过程中都可能设置该变量

frameworks/base/core/java/android/view/ViewRootImpl.javapublic void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {......          // addToDisplay() 将调用WMS mService.addWindow()                res = mWindowSession.addToDisplay(mWindow, mSeq, mWindowAttributes,                        getHostVisibility(), mDisplay.getDisplayId(), mWinFrame,                        mAttachInfo.mContentInsets, mAttachInfo.mStableInsets,                        mAttachInfo.mOutsets, mAttachInfo.mDisplayCutout, mInputChannel);...... //                mInputEventReceiver = new WindowInputEventReceiver(mInputChannel,                        Looper.myLooper());            }

对应用来说在setView() 时会调用mWindowSession.addToDisplay(),很后调用addWindow(), 然后win.openInputChannel(outInputChannel)等建立channel操作
addToDisplay() 之会,会将mInputChannel looper,通过 WindowInputEventReceiver绑在一起,
这样当有数据到来时在looper里面处理。

WindowInputEventReceiver()流程如下

WindowInputEventReceiver() --> InputEventReceiver.java InputEventReceiver() --> nativeInit() -->frameworks/base/core/jni/android_view_InputEventReceiver.cppstatic jlong nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak,        jobject inputChannelObj, jobject messageQueueObj) {......    sp<NativeInputEventReceiver> receiver = new NativeInputEventReceiver(env,            receiverWeak, inputChannel, messageQueue);    status_t status = receiver->initialize();......}initialize() (NativeInputEventReceiver::initialize())--> setFdEvents(ALOOPER_EVENT_INPUT) -->// 注意事件类型为 ALOOPER_EVENT_INPUTvoid NativeInputEventReceiver::setFdEvents(int events) {    if (mFdEvents != events) {        mFdEvents = events;        int fd = mInputConsumer.getChannel()->getFd();        if (events) {            mMessageQueue->getLooper()->addFd(fd, 0, events, this, NULL);system/core/libutils/Looper.cppint Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) {......// 将input channel的fd加入到epoll监控中            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);

** 当socket接收到数据时,通过handle来处理

android_view_InputEventReceiver.cppint NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) {......// ALOOPER_EVENT_INPUT 事件    if (events & ALOOPER_EVENT_INPUT) {        JNIEnv* env = AndroidRuntime::getJNIEnv();        status_t status = consumeEvents(env, false /*consumeBatches*/, -1, NULL);        mMessageQueue->raiseAndClearException(env, "handleReceiveCallback");        return status == OK || status == NO_MEMORY ? 1 : 0;    }......}handleEvent() --> consumeEvents() -->status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env,        bool consumeBatches, nsecs_t frameTime, bool* outConsumedBatch) {......        status_t status = mInputConsumer.consume(&mInputEventFactory, //取数据......            if (inputEventObj) {...                env->CallVoidMethod(receiverObj.get(),                        gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj, //调用 dispatchInputEvent()......}-->frameworks/base/core/java/android/view/InputEventReceiver.java dispatchInputEvent() --> onInputEvent() --> final class WindowInputEventReceiver extends InputEventReceiver {......    @Override    public void onInputEvent(InputEvent event, int displayId) {        enqueueInputEvent(event, this, 0, true);    }void enqueueInputEvent(InputEvent event,        InputEventReceiver receiver, int flags, boolean processImmediately) {......    if (processImmediately) {        doProcessInputEvents(); // -->  deliverInputEvent(q);    } else {        scheduleProcessInputEvents();    }}ViewRootImpl.javaprivate void deliverInputEvent(QueuedInputEvent q) {......    InputStage stage;    if (q.shouldSendToSynthesizer()) {        stage = mSyntheticInputStage;    } else {        // mFirstPostImeInputStage = earlyPostImeStage; new EarlyPostImeInputStage(nativePostImeStage); 注意参数为nativePostImeStage,在 apply(q, onProcess(q)) 返回forward时会用到        stage = q.shouldSkipIme() ? mFirstPostImeInputStage : mFirstInputStage;    }......    if (stage != null) {        handleWindowFocusChanged();        stage.deliver(q);......}stage.deliver --> apply(q, onProcess(q)) --> EarlyPostImeInputStage onProcess() --> processPointerEvent() --> (EarlyPostImeInputStage-->NativePostImeInputStage-->ViewPostImeInputStage-->SyntheticInputStage;)ViewPostImeInputStage mView.dispatchPointerEvent(event)View.java dispatchPointerEvent() +-->View.java dispatchTouchEvent() --> li.mOnTouchListener.onTouch(this, event) onTouchEvent(event)                                 +                                 +--> ViewGroup.java dispatchTouchEvent()

4.2 input monitor笔记

在分发input数据时,会把 mMonitoringChannels 加入到目标中,然后通过socket也发给该目标,
InputDispatcher::dispatchMotionLocked() --> addMonitoringTargetsLocked() --> for mMonitoringChannels
在WMS时构造,会通过monitorInput()创建,
之后别的服务可通过WMS registerPointerEventListener() unregisterPointerEventListener() 以listener方式获取数据

frameworks/base/services/core/java/com/android/server/wm/WindowManagerService.javaprivate WindowManagerService(......) {......    if(mInputManager != null) {        final InputChannel inputChannel = mInputManager.monitorInput(TAG_WM);        mPointerEventDispatcher = inputChannel != null                ? new PointerEventDispatcher(inputChannel) : null;@Overridepublic void registerPointerEventListener(PointerEventListener listener) {    mPointerEventDispatcher.registerInputEventListener(listener);}@Overridepublic void unregisterPointerEventListener(PointerEventListener listener) {    mPointerEventDispatcher.unregisterInputEventListener(listener);}

monitorInput()流程如下:

InputManagerService.java monitorInput()    +--> nativeRegisterInputChannel(......, true);        +--> NativeInputManager::registerInputChannel()             +--> mInputManager->getDispatcher()->registerInputChannel() -->status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel,        const sp<InputWindowHandle>& inputWindowHandle, bool monitor) {......        if (monitor) {            mMonitoringChannels.push(inputChannel);        }......}

个人笔记

数据的转存

从slot --> RawPointerData --> cookAndDispatch() cookPointerData()进一步处理将值给
mCurrentCookedState.cookedPointerData,主要为
cookedPointerData.pointerCoords cookedPointerData.pointerProperties
dispatchMotion()时参数传入cookedPointerData,进一步将数据封装为
NotifyMotionArgs

dispatchMotion(when, policyFlags, mSource,
......

   mCurrentCookedStat.cookedPointerData.pointerProperties,   mCurrentCookedStat.cookedPointerData.pointerCoords,   mCurrentCookedStat.cookedPointerData.idToIndex,

......

TouchInputMapper::sync() +-> syncTouch(when, next); --> 数据从slot到outState->rawPointerData.pointers[outCount];

                     +-> processRawTouches() --> cookAndDispatch() --> dispatchTouches() --> dispatchMotion()

数据处理完后将 NotifyMotionArgs 压入mArgsQueue
TouchInputMapper::dispatchMotion() --> getListener()->notifyMotion(&args) -->
frameworks/native/services/inputflinger/InputListener.cpp
void NotifyMotionArgs::notify(const sp<InputListenerInterface>& listener) const {

listener->notifyMotion(this);

}
void QueuedInputListener::notifyMotion(const NotifyMotionArgs* args) {

mArgsQueue.push(new NotifyMotionArgs(*args));

}

void MultiTouchInputMapper::syncTouch(nsecs_t when, RawState* outState) {

size_t inCount = mMultiTouchMotionAccumulator.getSlotCount();

......

for (size_t inIndex = 0; inIndex < inCount; inIndex++) {    const MultiTouchMotionAccumulator::Slot* inSlot =            mMultiTouchMotionAccumulator.getSlot(inIndex);

......

    RawPointerData::Pointer& outPointer = outState->rawPointerData.pointers[outCount];    outPointer.x = inSlot->getX();    outPointer.y = inSlot->getY();

......
}

数据从MultiTouchMotionAccumulator::Slot 转到 RawPointerData::Pointer

void TouchInputMapper::processRawTouches(bool timeout) {....//在处理mRawStatesPending数据时,一个一个取出给mCurrentRawState,然后 cookAndDispatch进一步处理    for(count = 0; count < N; count++) {        const RawState& next = mRawStatesPending[count];......//给mCurrentRawState        mCurrentRawState.copyFrom(next);......//cookAndDispatch加工并分发        cookAndDispatch(mCurrentRawState.when);void TouchInputMapper::cookPointerData() {    uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount;    mCurrentCookedState.cookedPointerData.clear();......//将数据进一步的处理,例如,计算旋转后的值    // Walk through the the active pointers and map device coordinates onto    // surface coordinates and adjust for display orientation.    for (uint32_t i = 0; i < currentPointerCount; i++) {        const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i];......        case DISPLAY_ORIENTATION_90:            x = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;            y = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate;......//将值给 cookedPointerData.pointerCoords        // Write output coords.        PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i];        out.clear();        out.setAxisValue(AMOTION_EVENT_AXIS_X, x);        out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);        out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);......//将值给 cookedPointerData.pointerProperties        // Write output properties.        PointerProperties& properties =                mCurrentCookedState.cookedPointerData.pointerProperties[i];        uint32_t id = in.id;        properties.clear();        properties.id = id;        properties.toolType = in.toolType;        // Write id index.        mCurrentCookedState.cookedPointerData.idToIndex[id] = i;......