序本文主要研究一下flink Table的Group Windows实例Table table = input .window([Window w].as(“w”)) // define window with alias w .groupBy(“w”) // group the table by window w .select(“b.sum”); // aggregateTable table = input .window([Window w].as(“w”)) // define window with alias w .groupBy(“w, a”) // group the table by attribute a and window w .select(“a, b.sum”); // aggregateTable table = input .window([Window w].as(“w”)) // define window with alias w .groupBy(“w, a”) // group the table by attribute a and window w .select(“a, w.start, w.end, w.rowtime, b.count”); // aggregate and add window start, end, and rowtime timestampswindow操作可以对Window进行别名,然后可以在groupBy及select中引用,window有start、end、rowtime属性可以用,其中start及rowtime是inclusive的,而end为exclusiveTumbling Windows实例// Tumbling Event-time Window.window(Tumble.over(“10.minutes”).on(“rowtime”).as(“w”));// Tumbling Processing-time Window (assuming a processing-time attribute “proctime”).window(Tumble.over(“10.minutes”).on(“proctime”).as(“w”));// Tumbling Row-count Window (assuming a processing-time attribute “proctime”).window(Tumble.over(“10.rows”).on(“proctime”).as(“w”));Tumbling Windows按固定窗口大小来移动,因而窗口不重叠;over方法用于指定窗口大小;窗口大小可以基于event-time、processing-time、row-count来定义Sliding Windows实例// Sliding Event-time Window.window(Slide.over(“10.minutes”).every(“5.minutes”).on(“rowtime”).as(“w”));// Sliding Processing-time window (assuming a processing-time attribute “proctime”).window(Slide.over(“10.minutes”).every(“5.minutes”).on(“proctime”).as(“w”));// Sliding Row-count window (assuming a processing-time attribute “proctime”).window(Slide.over(“10.rows”).every(“5.rows”).on(“proctime”).as(“w”));Sliding Windows在slide interval小于window size的时候,窗口会有重叠,因而rows可能归属多个窗口;over方法用于指定窗口大小,窗口大小可以基于event-time、processing-time、row-count来定义;every方法用于指定slide intervalSession Windows实例// Session Event-time Window.window(Session.withGap(“10.minutes”).on(“rowtime”).as(“w”));// Session Processing-time Window (assuming a processing-time attribute “proctime”).window(Session.withGap(“10.minutes”).on(“proctime”).as(“w”));Session Windows没有固定的窗口大小,它基于inactivity的程度来关闭窗口,withGap方法用于指定两个窗口的gap,作为time interval;Session Windows只能使用event-time或者processing-timeTable.windowflink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/api/table.scalaclass Table( private[flink] val tableEnv: TableEnvironment, private[flink] val logicalPlan: LogicalNode) { //…… def window(window: Window): WindowedTable = { new WindowedTable(this, window) } //……}Table提供了window操作,接收Window参数,创建的是WindowedTableWindowedTableflink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/api/table.scalaclass WindowedTable( private[flink] val table: Table, private[flink] val window: Window) { def groupBy(fields: Expression*): WindowGroupedTable = { val fieldsWithoutWindow = fields.filterNot(window.alias.equals(_)) if (fields.size != fieldsWithoutWindow.size + 1) { throw new ValidationException(“GroupBy must contain exactly one window alias.”) } new WindowGroupedTable(table, fieldsWithoutWindow, window) } def groupBy(fields: String): WindowGroupedTable = { val fieldsExpr = ExpressionParser.parseExpressionList(fields) groupBy(fieldsExpr: _) }}WindowedTable只提供groupBy操作,其中groupBy可以接收String类型的参数,也可以接收Expression类型的参数;String类型的参数会被转换为Expression类型,最后调用的是Expression类型参数的groupBy方法;如果groupBy除了window没有其他属性,则其parallelism为1,只会在单一task上执行;groupBy方法创建的是WindowGroupedTableWindowGroupedTableflink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/api/table.scalaclass WindowGroupedTable( private[flink] val table: Table, private[flink] val groupKeys: Seq[Expression], private[flink] val window: Window) { def select(fields: Expression): Table = { val expandedFields = expandProjectList(fields, table.logicalPlan, table.tableEnv) val (aggNames, propNames) = extractAggregationsAndProperties(expandedFields, table.tableEnv) val projectsOnAgg = replaceAggregationsAndProperties( expandedFields, table.tableEnv, aggNames, propNames) val projectFields = extractFieldReferences(expandedFields ++ groupKeys :+ window.timeField) new Table(table.tableEnv, Project( projectsOnAgg, WindowAggregate( groupKeys, window.toLogicalWindow, propNames.map(a => Alias(a._1, a._2)).toSeq, aggNames.map(a => Alias(a._1, a.2)).toSeq, Project(projectFields, table.logicalPlan).validate(table.tableEnv) ).validate(table.tableEnv), // required for proper resolution of the time attribute in multi-windows explicitAlias = true ).validate(table.tableEnv)) } def select(fields: String): Table = { val fieldExprs = ExpressionParser.parseExpressionList(fields) //get the correct expression for AggFunctionCall val withResolvedAggFunctionCall = fieldExprs.map(replaceAggFunctionCall(, table.tableEnv)) select(withResolvedAggFunctionCall: _*) }}WindowGroupedTable只提供select操作,其中select可以接收String类型的参数,也可以接收Expression类型的参数;String类型的参数会被转换为Expression类型,最后调用的是Expression类型参数的select方法;select方法创建了新的Table,其Project的child为WindowAggregate小结window操作可以对Window进行别名,然后可以在groupBy及select中引用,window有start、end、rowtime属性可以用,其中start及rowtime是inclusive的,而end为exclusiveTumbling Windows按固定窗口大小来移动,因而窗口不重叠;over方法用于指定窗口大小;窗口大小可以基于event-time、processing-time、row-count来定义;Sliding Windows在slide interval小于window size的时候,窗口会有重叠,因而rows可能归属多个窗口;over方法用于指定窗口大小,窗口大小可以基于event-time、processing-time、row-count来定义;every方法用于指定slide interval;Session Windows没有固定的窗口大小,它基于inactivity的程度来关闭窗口,withGap方法用于指定两个窗口的gap,作为time interval;Session Windows只能使用event-time或者processing-timeTable提供了window操作,接收Window参数,创建的是WindowedTable;WindowedTable只提供groupBy操作,其中groupBy可以接收String类型的参数,也可以接收Expression类型的参数;String类型的参数会被转换为Expression类型,最后调用的是Expression类型参数的groupBy方法;如果groupBy除了window没有其他属性,则其parallelism为1,只会在单一task上执行;groupBy方法创建的是WindowGroupedTable;WindowGroupedTable只提供select操作,其中select可以接收String类型的参数,也可以接收Expression类型的参数;String类型的参数会被转换为Expression类型,最后调用的是Expression类型参数的select方法;select方法创建了新的Table,其Project的child为WindowAggregatedocGroup Windows