缘起因为项目中使用mysql的AES_DECRYPT方法,欲使用golang实现该方法, 但是研究了半天没明白怎么回事, 最后才发现golang当前默认支持CBC的方式,但是mysql当前使用的是ECB模式, 所以需要使用者分组分块加密,特总结一下golang中的各个加密算法关于密码学当前我们项目中常用的加解密的方式无非三种.对称加密, 加解密都使用的是同一个密钥, 其中的代表就是AES非对加解密, 加解密使用不同的密钥, 其中的代表就是RSA签名算法, 如MD5、SHA1、HMAC等, 主要用于验证,防止信息被修改, 如:文件校验、数字签名、鉴权协议AESAES:高级加密标准(Advanced Encryption Standard),又称Rijndael加密法,这个标准用来替代原先的DES。AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。块:对明文进行加密的时候,先要将明文按照128bit进行划分。填充方式:因为明文的长度不一定总是128的整数倍,所以要进行补位,我们这里采用的是PKCS7填充方式AES实现的方式多样, 其中包括ECB、CBC、CFB、OFB等1.电码本模式(Electronic Codebook Book (ECB))将明文分组加密之后的结果直接称为密文分组。2.密码分组链接模式(Cipher Block Chaining (CBC))将明文分组与前一个密文分组进行XOR运算,然后再进行加密。每个分组的加解密都依赖于前一个分组。而第一个分组没有前一个分组,因此需要一个初始化向量3.计算器模式(Counter (CTR))4.密码反馈模式(Cipher FeedBack (CFB))前一个密文分组会被送回到密码算法的输入端。在CBC和EBC模式中,明文分组都是通过密码算法进行加密的。而在CFB模式中,明文分组并没有通过加密算法直接进行加密,明文分组和密文分组之间只有一个XOR。5.输出反馈模式(Output FeedBack (OFB))加密模式对应加解密方法CBCNewCBCDecrypter, NewCBCEncrypterCTRNewCTRCFBNewCFBDecrypter, NewCFBEncrypterOFBNewOFB相关示例见: https://golang.org/src/crypto...1.CBC模式, 最常见的使用的方式package mainimport( “bytes” “crypto/aes” “fmt” “crypto/cipher” “encoding/base64”)func main() { orig := “hello world” key := “0123456789012345” fmt.Println(“原文:”, orig) encryptCode := AesEncrypt(orig, key) fmt.Println(“密文:” , encryptCode) decryptCode := AesDecrypt(encryptCode, key) fmt.Println(“解密结果:”, decryptCode)}func AesEncrypt(orig string, key string) string { // 转成字节数组 origData := []byte(orig) k := []byte(key) // 分组秘钥 // NewCipher该函数限制了输入k的长度必须为16, 24或者32 block, _ := aes.NewCipher(k) // 获取秘钥块的长度 blockSize := block.BlockSize() // 补全码 origData = PKCS7Padding(origData, blockSize) // 加密模式 blockMode := cipher.NewCBCEncrypter(block, k[:blockSize]) // 创建数组 cryted := make([]byte, len(origData)) // 加密 blockMode.CryptBlocks(cryted, origData) return base64.StdEncoding.EncodeToString(cryted)}func AesDecrypt(cryted string, key string) string { // 转成字节数组 crytedByte, _ := base64.StdEncoding.DecodeString(cryted) k := []byte(key) // 分组秘钥 block, _ := aes.NewCipher(k) // 获取秘钥块的长度 blockSize := block.BlockSize() // 加密模式 blockMode := cipher.NewCBCDecrypter(block, k[:blockSize]) // 创建数组 orig := make([]byte, len(crytedByte)) // 解密 blockMode.CryptBlocks(orig, crytedByte) // 去补全码 orig = PKCS7UnPadding(orig) return string(orig)}//补码//AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。func PKCS7Padding(ciphertext []byte, blocksize int) []byte { padding := blocksize - len(ciphertext)%blocksize padtext := bytes.Repeat([]byte{byte(padding)}, padding) return append(ciphertext, padtext…)}//去码func PKCS7UnPadding(origData []byte) []byte { length := len(origData) unpadding := int(origData[length-1]) return origData[:(length - unpadding)]}2.ECB模式: mysql中AES_DECRYPT函数的实现方式主要关注三点: 1.调用aes.NewCipher([]byte)是加密关键字key的生成方式, 即下面的generateKey方法2.分组分块加密的加密方式3.mysql中一般需要HEX函数来转化数据格式加密: HEX(AES_ENCRYPT(‘关键信息’, ‘—key’))解密: AES_DECRYPT(UNHEX(‘关键信息’), ‘-key’)所以调用AESEncrypt或者AESDecrypt方法之后, 使用hex.EncodeToString()转化代码参考: https://github.com/fkfk/mysql...package mysqlcryptoimport ( “crypto/aes”)func AESEncrypt(src []byte, key []byte) (encrypted []byte) { cipher, _ := aes.NewCipher(generateKey(key)) length := (len(src) + aes.BlockSize) / aes.BlockSize plain := make([]byte, length*aes.BlockSize) copy(plain, src) pad := byte(len(plain) - len(src)) for i := len(src); i < len(plain); i++ { plain[i] = pad } encrypted = make([]byte, len(plain)) // 分组分块加密 for bs, be := 0, cipher.BlockSize(); bs <= len(src); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() { cipher.Encrypt(encrypted[bs:be], plain[bs:be]) } return encrypted}func AESDecrypt(encrypted []byte, key []byte) (decrypted []byte) { cipher, _ := aes.NewCipher(generateKey(key)) decrypted = make([]byte, len(encrypted)) // for bs, be := 0, cipher.BlockSize(); bs < len(encrypted); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() { cipher.Decrypt(decrypted[bs:be], encrypted[bs:be]) } trim := 0 if len(decrypted) > 0 { trim = len(decrypted) - int(decrypted[len(decrypted)-1]) } return decrypted[:trim]}func generateKey(key []byte) (genKey []byte) { genKey = make([]byte, 16) copy(genKey, key) for i := 16; i < len(key); { for j := 0; j < 16 && i < len(key); j, i = j+1, i+1 { genKey[j] ^= key[i] } } return genKey}CFB模式代码来源: https://golang.org/src/crypto...func ExampleNewCFBDecrypter() { // Load your secret key from a safe place and reuse it across multiple // NewCipher calls. (Obviously don’t use this example key for anything // real.) If you want to convert a passphrase to a key, use a suitable // package like bcrypt or scrypt. key, _ := hex.DecodeString(“6368616e676520746869732070617373”) ciphertext, _ := hex.DecodeString(“7dd015f06bec7f1b8f6559dad89f4131da62261786845100056b353194ad”) block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it’s common to // include it at the beginning of the ciphertext. if len(ciphertext) < aes.BlockSize { panic(“ciphertext too short”) } iv := ciphertext[:aes.BlockSize] ciphertext = ciphertext[aes.BlockSize:] stream := cipher.NewCFBDecrypter(block, iv) // XORKeyStream can work in-place if the two arguments are the same. stream.XORKeyStream(ciphertext, ciphertext) fmt.Printf("%s", ciphertext) // Output: some plaintext}func ExampleNewCFBEncrypter() { // Load your secret key from a safe place and reuse it across multiple // NewCipher calls. (Obviously don’t use this example key for anything // real.) If you want to convert a passphrase to a key, use a suitable // package like bcrypt or scrypt. key, _ := hex.DecodeString(“6368616e676520746869732070617373”) plaintext := []byte(“some plaintext”) block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it’s common to // include it at the beginning of the ciphertext. ciphertext := make([]byte, aes.BlockSize+len(plaintext)) iv := ciphertext[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { panic(err) } stream := cipher.NewCFBEncrypter(block, iv) stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext) // It’s important to remember that ciphertexts must be authenticated // (i.e. by using crypto/hmac) as well as being encrypted in order to // be secure. fmt.Printf("%x\n", ciphertext)}RSA首先使用openssl生成公私钥import ( “crypto/rand” “crypto/rsa” “crypto/x509” “encoding/base64” “encoding/pem” “errors” “fmt”)// 私钥生成//openssl genrsa -out rsa_private_key.pem 1024var privateKey = []byte(-----BEGIN RSA PRIVATE KEY-----MIICWwIBAAKBgQDcGsUIIAINHfRTdMmgGwLrjzfMNSrtgIf4EGsNaYwmC1GjF/bMh0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdTnCDPPZ7oV7p1B9Pud+6zPacoqDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Zy682X1+R1lRK8D+vmQIDAQABAoGAeWAZvz1HZExca5k/hpbeqV+0+VtobMgwMs96+U53BpO/VRzl8Cu3CpNyb7HY64L9YQ+J5QgpPhqkgIO0dMu/0RIXsmhvr2gcxmKObcqT3JQ6S4rjHTln49I2sYTz7JEH4TcplKjSjHyq5MhHfA+CV2/AB2BO6G8limu7SheXuvECQQDwOpZrZDeTOOBkz1vercawd+J9ll/FZYttnrWYTI1sSF1sNfZ7dUXPyYPQFZ0LQ1bhZGmWBZ6a6wd9R+PKlmJvAkEA6o32c/WEXxW2zeh18sOO4wqUiBYq3L3hFObhcsUAY8jfykQefW8qyPuuL02jLIajFWd0itjvIrzWnVmoUuXydwJAXGLrvllIVkIlah+lATprkypH3GycYFnxCTNkOzIVoXMjGp6WMFylgIfLPZdSUiaPnxby1FNM7987fh7Lp/m12QJAK9iL2JNtwkSR3p305oOuAz0oFORn8MnB+KFMRaMT9pNHWk0vke0lB1sc7ZTKyvkEJW0oeQgic9DvIYzwDUcU8wJAIkKROzuzLi9AvLnLUrSdI6998lmeYO9x7pwZPukz3erazncjRK3pbVkv0KrKfczuJiRlZ7dUzVO0b6QJr8TRAA==-----END RSA PRIVATE KEY-----)// 公钥: 根据私钥生成//openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pemvar publicKey = []byte(-----BEGIN PUBLIC KEY-----MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDcGsUIIAINHfRTdMmgGwLrjzfMNSrtgIf4EGsNaYwmC1GjF/bMh0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdTnCDPPZ7oV7p1B9Pud+6zPacoqDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Zy682X1+R1lRK8D+vmQIDAQAB-----END PUBLIC KEY-----)// 加密func RsaEncrypt(origData []byte) ([]byte, error) { //解密pem格式的公钥 block, _ := pem.Decode(publicKey) if block == nil { return nil, errors.New(“public key error”) } // 解析公钥 pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes) if err != nil { return nil, err } // 类型断言 pub := pubInterface.(*rsa.PublicKey) //加密 return rsa.EncryptPKCS1v15(rand.Reader, pub, origData)}// 解密func RsaDecrypt(ciphertext []byte) ([]byte, error) { //解密 block, _ := pem.Decode(privateKey) if block == nil { return nil, errors.New(“private key error!”) } //解析PKCS1格式的私钥 priv, err := x509.ParsePKCS1PrivateKey(block.Bytes) if err != nil { return nil, err } // 解密 return rsa.DecryptPKCS1v15(rand.Reader, priv, ciphertext)}func main() { data, _ := RsaEncrypt([]byte(“hello world”)) fmt.Println(base64.StdEncoding.EncodeToString(data)) origData, _ := RsaDecrypt(data) fmt.Println(string(origData))} 散列算法// sha256加密字符串str := “hello world"sum := sha256.Sum256([]byte(str))fmt.Printf(“SHA256:%x\n”, sum)// sha256加密文件内容func fileSha156() { file, err := os.OpenFile(“e:/test.txt”, os.O_RDONLY, 0777) if err != nil { panic(err) } defer file.Close() h := sha256.New() // 将文件内容拷贝到sha256中 io.Copy(h, file) fmt.Printf("%x\n”, h.Sum(nil))}// md5加密 result := md5.Sum([]byte(str))fmt.Printf(“MD5:%x\n”, result)参考文档golang中几种加密方式的处理对称加密算法和分组密码的模式