序本文主要研究一下storm的PartialKeyGrouping实例 @Test public void testPartialKeyGrouping() throws InvalidTopologyException, AuthorizationException, AlreadyAliveException { String spoutId = “wordGenerator”; String counterId = “counter”; String aggId = “aggregator”; String intermediateRankerId = “intermediateRanker”; String totalRankerId = “finalRanker”; int TOP_N = 5; TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(spoutId, new TestWordSpout(), 5); //NOTE 通过partialKeyGrouping替代fieldsGrouping,实现较为均衡的负载到countBolt builder.setBolt(counterId, new RollingCountBolt(9, 3), 4).partialKeyGrouping(spoutId, new Fields(“word”)); builder.setBolt(aggId, new RollingCountAggBolt(), 4).fieldsGrouping(counterId, new Fields(“obj”)); builder.setBolt(intermediateRankerId, new IntermediateRankingsBolt(TOP_N), 4).fieldsGrouping(aggId, new Fields(“obj”)); builder.setBolt(totalRankerId, new TotalRankingsBolt(TOP_N)).globalGrouping(intermediateRankerId); submitRemote(builder); }值得注意的是在wordCount的bolt使用PartialKeyGrouping,同一个单词不再固定发给相同的task,因此这里还需要RollingCountAggBolt按fieldsGrouping进行合并。PartialKeyGrouping(1.2.2版)storm-core-1.2.2-sources.jar!/org/apache/storm/grouping/PartialKeyGrouping.javapublic class PartialKeyGrouping implements CustomStreamGrouping, Serializable { private static final long serialVersionUID = -447379837314000353L; private List<Integer> targetTasks; private long[] targetTaskStats; private HashFunction h1 = Hashing.murmur3_128(13); private HashFunction h2 = Hashing.murmur3_128(17); private Fields fields = null; private Fields outFields = null; public PartialKeyGrouping() { //Empty } public PartialKeyGrouping(Fields fields) { this.fields = fields; } @Override public void prepare(WorkerTopologyContext context, GlobalStreamId stream, List<Integer> targetTasks) { this.targetTasks = targetTasks; targetTaskStats = new long[this.targetTasks.size()]; if (this.fields != null) { this.outFields = context.getComponentOutputFields(stream); } } @Override public List<Integer> chooseTasks(int taskId, List<Object> values) { List<Integer> boltIds = new ArrayList<>(1); if (values.size() > 0) { byte[] raw; if (fields != null) { List<Object> selectedFields = outFields.select(fields, values); ByteBuffer out = ByteBuffer.allocate(selectedFields.size() * 4); for (Object o: selectedFields) { if (o instanceof List) { out.putInt(Arrays.deepHashCode(((List)o).toArray())); } else if (o instanceof Object[]) { out.putInt(Arrays.deepHashCode((Object[])o)); } else if (o instanceof byte[]) { out.putInt(Arrays.hashCode((byte[]) o)); } else if (o instanceof short[]) { out.putInt(Arrays.hashCode((short[]) o)); } else if (o instanceof int[]) { out.putInt(Arrays.hashCode((int[]) o)); } else if (o instanceof long[]) { out.putInt(Arrays.hashCode((long[]) o)); } else if (o instanceof char[]) { out.putInt(Arrays.hashCode((char[]) o)); } else if (o instanceof float[]) { out.putInt(Arrays.hashCode((float[]) o)); } else if (o instanceof double[]) { out.putInt(Arrays.hashCode((double[]) o)); } else if (o instanceof boolean[]) { out.putInt(Arrays.hashCode((boolean[]) o)); } else if (o != null) { out.putInt(o.hashCode()); } else { out.putInt(0); } } raw = out.array(); } else { raw = values.get(0).toString().getBytes(); // assume key is the first field } int firstChoice = (int) (Math.abs(h1.hashBytes(raw).asLong()) % this.targetTasks.size()); int secondChoice = (int) (Math.abs(h2.hashBytes(raw).asLong()) % this.targetTasks.size()); int selected = targetTaskStats[firstChoice] > targetTaskStats[secondChoice] ? secondChoice : firstChoice; boltIds.add(targetTasks.get(selected)); targetTaskStats[selected]++; } return boltIds; }}可以看到PartialKeyGrouping是一种CustomStreamGrouping,在prepare的时候,初始化了long[] targetTaskStats用于统计每个taskpartialKeyGrouping如果没有指定fields,则默认按outputFields的第一个field来计算这里使用guava类库提供的Hashing.murmur3_128函数,构造了两个HashFunction,然后计算哈希值的绝对值与targetTasks.size()取余数得到两个可选的taskId下标然后根据targetTaskStats的统计值,取用过的次数小的那个taskId,选中之后更新targetTaskStatsPartialKeyGrouping(2.0.0版)storm-2.0.0/storm-client/src/jvm/org/apache/storm/grouping/PartialKeyGrouping.java/** * A variation on FieldGrouping. This grouping operates on a partitioning of the incoming tuples (like a FieldGrouping), but it can send * Tuples from a given partition to multiple downstream tasks. * * Given a total pool of target tasks, this grouping will always send Tuples with a given key to one member of a subset of those tasks. Each * key is assigned a subset of tasks. Each tuple is then sent to one task from that subset. * * Notes: - the default TaskSelector ensures each task gets as close to a balanced number of Tuples as possible - the default * AssignmentCreator hashes the key and produces an assignment of two tasks /public class PartialKeyGrouping implements CustomStreamGrouping, Serializable { private static final long serialVersionUID = -1672360572274911808L; private List<Integer> targetTasks; private Fields fields = null; private Fields outFields = null; private AssignmentCreator assignmentCreator; private TargetSelector targetSelector; public PartialKeyGrouping() { this(null); } public PartialKeyGrouping(Fields fields) { this(fields, new RandomTwoTaskAssignmentCreator(), new BalancedTargetSelector()); } public PartialKeyGrouping(Fields fields, AssignmentCreator assignmentCreator) { this(fields, assignmentCreator, new BalancedTargetSelector()); } public PartialKeyGrouping(Fields fields, AssignmentCreator assignmentCreator, TargetSelector targetSelector) { this.fields = fields; this.assignmentCreator = assignmentCreator; this.targetSelector = targetSelector; } @Override public void prepare(WorkerTopologyContext context, GlobalStreamId stream, List<Integer> targetTasks) { this.targetTasks = targetTasks; if (this.fields != null) { this.outFields = context.getComponentOutputFields(stream); } } @Override public List<Integer> chooseTasks(int taskId, List<Object> values) { List<Integer> boltIds = new ArrayList<>(1); if (values.size() > 0) { final byte[] rawKeyBytes = getKeyBytes(values); final int[] taskAssignmentForKey = assignmentCreator.createAssignment(this.targetTasks, rawKeyBytes); final int selectedTask = targetSelector.chooseTask(taskAssignmentForKey); boltIds.add(selectedTask); } return boltIds; } /* * Extract the key from the input Tuple. / private byte[] getKeyBytes(List<Object> values) { byte[] raw; if (fields != null) { List<Object> selectedFields = outFields.select(fields, values); ByteBuffer out = ByteBuffer.allocate(selectedFields.size() * 4); for (Object o : selectedFields) { if (o instanceof List) { out.putInt(Arrays.deepHashCode(((List) o).toArray())); } else if (o instanceof Object[]) { out.putInt(Arrays.deepHashCode((Object[]) o)); } else if (o instanceof byte[]) { out.putInt(Arrays.hashCode((byte[]) o)); } else if (o instanceof short[]) { out.putInt(Arrays.hashCode((short[]) o)); } else if (o instanceof int[]) { out.putInt(Arrays.hashCode((int[]) o)); } else if (o instanceof long[]) { out.putInt(Arrays.hashCode((long[]) o)); } else if (o instanceof char[]) { out.putInt(Arrays.hashCode((char[]) o)); } else if (o instanceof float[]) { out.putInt(Arrays.hashCode((float[]) o)); } else if (o instanceof double[]) { out.putInt(Arrays.hashCode((double[]) o)); } else if (o instanceof boolean[]) { out.putInt(Arrays.hashCode((boolean[]) o)); } else if (o != null) { out.putInt(o.hashCode()); } else { out.putInt(0); } } raw = out.array(); } else { raw = values.get(0).toString().getBytes(); // assume key is the first field } return raw; } //……}2.0.0版本将逻辑封装到了RandomTwoTaskAssignmentCreator以及BalancedTargetSelector中RandomTwoTaskAssignmentCreatorstorm-2.0.0/storm-client/src/jvm/org/apache/storm/grouping/PartialKeyGrouping.java /* * This interface is responsible for choosing a subset of the target tasks to use for a given key. * * NOTE: whatever scheme you use to create the assignment should be deterministic. This may be executed on multiple Storm Workers, thus * each of them needs to come up with the same assignment for a given key. / public interface AssignmentCreator extends Serializable { int[] createAssignment(List<Integer> targetTasks, byte[] key); } /========== Implementations ==========*/ /** * This implementation of AssignmentCreator chooses two arbitrary tasks. / public static class RandomTwoTaskAssignmentCreator implements AssignmentCreator { /* * Creates a two task assignment by selecting random tasks. / public int[] createAssignment(List<Integer> tasks, byte[] key) { // It is necessary that this produce a deterministic assignment based on the key, so seed the Random from the key final long seedForRandom = Arrays.hashCode(key); final Random random = new Random(seedForRandom); final int choice1 = random.nextInt(tasks.size()); int choice2 = random.nextInt(tasks.size()); // ensure that choice1 and choice2 are not the same task choice2 = choice1 == choice2 ? (choice2 + 1) % tasks.size() : choice2; return new int[]{ tasks.get(choice1), tasks.get(choice2) }; } }2.0.0版本不再使用guava类库提供的Hashing.murmur3_128哈希函数,转而使用key的哈希值作为seed,采用Random函数来计算两个taskId的下标,这里返回两个值供bolt做负载均衡选择BalancedTargetSelectorstorm-2.0.0/storm-client/src/jvm/org/apache/storm/grouping/PartialKeyGrouping.java /* * This interface chooses one element from a task assignment to send a specific Tuple to. / public interface TargetSelector extends Serializable { Integer chooseTask(int[] assignedTasks); } /* * A basic implementation of target selection. This strategy chooses the task within the assignment that has received the fewest Tuples * overall from this instance of the grouping. / public static class BalancedTargetSelector implements TargetSelector { private Map<Integer, Long> targetTaskStats = Maps.newHashMap(); /* * Chooses one of the incoming tasks and selects the one that has been selected the fewest times so far. */ public Integer chooseTask(int[] assignedTasks) { Integer taskIdWithMinLoad = null; Long minTaskLoad = Long.MAX_VALUE; for (Integer currentTaskId : assignedTasks) { final Long currentTaskLoad = targetTaskStats.getOrDefault(currentTaskId, 0L); if (currentTaskLoad < minTaskLoad) { minTaskLoad = currentTaskLoad; taskIdWithMinLoad = currentTaskId; } } targetTaskStats.put(taskIdWithMinLoad, targetTaskStats.getOrDefault(taskIdWithMinLoad, 0L) + 1); return taskIdWithMinLoad; } }BalancedTargetSelector根据选中的taskId,然后根据targetTaskStats计算taskIdWithMinLoad返回FieldsGrouperstorm-2.0.0/storm-client/src/jvm/org/apache/storm/daemon/GrouperFactory.java public static class FieldsGrouper implements CustomStreamGrouping { private Fields outFields; private List<List<Integer>> targetTasks; private Fields groupFields; private int numTasks; public FieldsGrouper(Fields outFields, Grouping thriftGrouping) { this.outFields = outFields; this.groupFields = new Fields(Thrift.fieldGrouping(thriftGrouping)); } @Override public void prepare(WorkerTopologyContext context, GlobalStreamId stream, List<Integer> targetTasks) { this.targetTasks = new ArrayList<List<Integer>>(); for (Integer targetTask : targetTasks) { this.targetTasks.add(Collections.singletonList(targetTask)); } this.numTasks = targetTasks.size(); } @Override public List<Integer> chooseTasks(int taskId, List<Object> values) { int targetTaskIndex = TupleUtils.chooseTaskIndex(outFields.select(groupFields, values), numTasks); return targetTasks.get(targetTaskIndex); } }这里可以看到FieldsGrouper的chooseTasks方法使用TupleUtils.chooseTaskIndex来选择taskId下标TupleUtils.chooseTaskIndexstorm-2.0.0/storm-client/src/jvm/org/apache/storm/utils/TupleUtils.java public static <T> int chooseTaskIndex(List<T> keys, int numTasks) { return Math.floorMod(listHashCode(keys), numTasks); } private static <T> int listHashCode(List<T> alist) { if (alist == null) { return 1; } else { return Arrays.deepHashCode(alist.toArray()); } }这里先对keys进行listHashCode,然后与numTasks进行Math.floorMod运算,即向下取模listHashCode调用了Arrays.deepHashCode(alist.toArray())进行哈希值计算小结storm的PartialKeyGrouping是解决fieldsGrouping造成的bolt节点skewed load的问题fieldsGrouping采取的是对所选字段进行哈希然后与taskId数量向下取模来选择taskId的下标PartialKeyGrouping在1.2.2版本的实现是使用guava提供的Hashing.murmur3_128哈希函数计算哈希值,然后取绝对值与taskId数量取余数得到两个可选的taskId下标;在2.0.0版本则使用key的哈希值作为seed,采用Random函数来计算两个taskId的下标。注意这里返回两个值供bolt做负载均衡选择,这是与fieldsGrouping的差别。在得到两个候选taskId之后,PartialKeyGrouping额外维护了taskId的使用数,每次选择使用少的,与此同时也更新每次选择的计数。值得注意的是在wordCount的bolt使用PartialKeyGrouping,同一个单词不再固定发给相同的task,因此这里还需要RollingCountAggBolt按fieldsGrouping进行合并。docCommon Topology PatternsThe Power of Both Choices: Practical Load Balancing for Distributed Stream Processing EnginesStorm-源码分析-Streaming Grouping (backtype.storm.daemon.executor)