共计 8328 个字符,预计需要花费 21 分钟才能阅读完成。
序
本文主要研究一下 flink DataStream 的 connect 操作
DataStream.connect
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java
@Public
public class DataStream<T> {
//……
public <R> ConnectedStreams<T, R> connect(DataStream<R> dataStream) {
return new ConnectedStreams<>(environment, this, dataStream);
}
@PublicEvolving
public <R> BroadcastConnectedStream<T, R> connect(BroadcastStream<R> broadcastStream) {
return new BroadcastConnectedStream<>(
environment,
this,
Preconditions.checkNotNull(broadcastStream),
broadcastStream.getBroadcastStateDescriptor());
}
//……
}
DataStream 的 connect 操作创建的是 ConnectedStreams 或 BroadcastConnectedStream,它用了两个泛型,即不要求两个 dataStream 的 element 是同一类型
ConnectedStreams
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/ConnectedStreams.java
@Public
public class ConnectedStreams<IN1, IN2> {
protected final StreamExecutionEnvironment environment;
protected final DataStream<IN1> inputStream1;
protected final DataStream<IN2> inputStream2;
protected ConnectedStreams(StreamExecutionEnvironment env, DataStream<IN1> input1, DataStream<IN2> input2) {
this.environment = requireNonNull(env);
this.inputStream1 = requireNonNull(input1);
this.inputStream2 = requireNonNull(input2);
}
public StreamExecutionEnvironment getExecutionEnvironment() {
return environment;
}
public DataStream<IN1> getFirstInput() {
return inputStream1;
}
public DataStream<IN2> getSecondInput() {
return inputStream2;
}
public TypeInformation<IN1> getType1() {
return inputStream1.getType();
}
public TypeInformation<IN2> getType2() {
return inputStream2.getType();
}
public ConnectedStreams<IN1, IN2> keyBy(int keyPosition1, int keyPosition2) {
return new ConnectedStreams<>(this.environment, inputStream1.keyBy(keyPosition1),
inputStream2.keyBy(keyPosition2));
}
public ConnectedStreams<IN1, IN2> keyBy(int[] keyPositions1, int[] keyPositions2) {
return new ConnectedStreams<>(environment, inputStream1.keyBy(keyPositions1),
inputStream2.keyBy(keyPositions2));
}
public ConnectedStreams<IN1, IN2> keyBy(String field1, String field2) {
return new ConnectedStreams<>(environment, inputStream1.keyBy(field1),
inputStream2.keyBy(field2));
}
public ConnectedStreams<IN1, IN2> keyBy(String[] fields1, String[] fields2) {
return new ConnectedStreams<>(environment, inputStream1.keyBy(fields1),
inputStream2.keyBy(fields2));
}
public ConnectedStreams<IN1, IN2> keyBy(KeySelector<IN1, ?> keySelector1, KeySelector<IN2, ?> keySelector2) {
return new ConnectedStreams<>(environment, inputStream1.keyBy(keySelector1),
inputStream2.keyBy(keySelector2));
}
public <KEY> ConnectedStreams<IN1, IN2> keyBy(
KeySelector<IN1, KEY> keySelector1,
KeySelector<IN2, KEY> keySelector2,
TypeInformation<KEY> keyType) {
return new ConnectedStreams<>(
environment,
inputStream1.keyBy(keySelector1, keyType),
inputStream2.keyBy(keySelector2, keyType));
}
public <R> SingleOutputStreamOperator<R> map(CoMapFunction<IN1, IN2, R> coMapper) {
TypeInformation<R> outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
coMapper,
CoMapFunction.class,
0,
1,
2,
TypeExtractor.NO_INDEX,
getType1(),
getType2(),
Utils.getCallLocationName(),
true);
return transform(“Co-Map”, outTypeInfo, new CoStreamMap<>(inputStream1.clean(coMapper)));
}
public <R> SingleOutputStreamOperator<R> flatMap(
CoFlatMapFunction<IN1, IN2, R> coFlatMapper) {
TypeInformation<R> outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
coFlatMapper,
CoFlatMapFunction.class,
0,
1,
2,
TypeExtractor.NO_INDEX,
getType1(),
getType2(),
Utils.getCallLocationName(),
true);
return transform(“Co-Flat Map”, outTypeInfo, new CoStreamFlatMap<>(inputStream1.clean(coFlatMapper)));
}
@PublicEvolving
public <R> SingleOutputStreamOperator<R> process(
CoProcessFunction<IN1, IN2, R> coProcessFunction) {
TypeInformation<R> outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
coProcessFunction,
CoProcessFunction.class,
0,
1,
2,
TypeExtractor.NO_INDEX,
getType1(),
getType2(),
Utils.getCallLocationName(),
true);
return process(coProcessFunction, outTypeInfo);
}
@Internal
public <R> SingleOutputStreamOperator<R> process(
CoProcessFunction<IN1, IN2, R> coProcessFunction,
TypeInformation<R> outputType) {
TwoInputStreamOperator<IN1, IN2, R> operator;
if ((inputStream1 instanceof KeyedStream) && (inputStream2 instanceof KeyedStream)) {
operator = new KeyedCoProcessOperator<>(inputStream1.clean(coProcessFunction));
} else {
operator = new CoProcessOperator<>(inputStream1.clean(coProcessFunction));
}
return transform(“Co-Process”, outputType, operator);
}
@PublicEvolving
public <R> SingleOutputStreamOperator<R> transform(String functionName,
TypeInformation<R> outTypeInfo,
TwoInputStreamOperator<IN1, IN2, R> operator) {
// read the output type of the input Transforms to coax out errors about MissingTypeInfo
inputStream1.getType();
inputStream2.getType();
TwoInputTransformation<IN1, IN2, R> transform = new TwoInputTransformation<>(
inputStream1.getTransformation(),
inputStream2.getTransformation(),
functionName,
operator,
outTypeInfo,
environment.getParallelism());
if (inputStream1 instanceof KeyedStream && inputStream2 instanceof KeyedStream) {
KeyedStream<IN1, ?> keyedInput1 = (KeyedStream<IN1, ?>) inputStream1;
KeyedStream<IN2, ?> keyedInput2 = (KeyedStream<IN2, ?>) inputStream2;
TypeInformation<?> keyType1 = keyedInput1.getKeyType();
TypeInformation<?> keyType2 = keyedInput2.getKeyType();
if (!(keyType1.canEqual(keyType2) && keyType1.equals(keyType2))) {
throw new UnsupportedOperationException(“Key types if input KeyedStreams ” +
“don’t match: ” + keyType1 + ” and ” + keyType2 + “.”);
}
transform.setStateKeySelectors(keyedInput1.getKeySelector(), keyedInput2.getKeySelector());
transform.setStateKeyType(keyType1);
}
@SuppressWarnings({“unchecked”, “rawtypes”})
SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, transform);
getExecutionEnvironment().addOperator(transform);
return returnStream;
}
}
ConnectedStreams 提供了 keyBy 方法用于指定两个 stream 的 keySelector,提供了 map、flatMap、process、transform 操作,其中前三个操作最后都是调用 transform 操作
transform 操作接收 TwoInputStreamOperator 类型的 operator,然后转换为 SingleOutputStreamOperator
map 操作接收 CoMapFunction,flatMap 操作接收 CoFlatMapFunction,process 操作接收 CoProcessFunction
CoMapFunction
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/co/CoMapFunction.java
@Public
public interface CoMapFunction<IN1, IN2, OUT> extends Function, Serializable {
OUT map1(IN1 value) throws Exception;
OUT map2(IN2 value) throws Exception;
}
CoMapFunction 继承了 Function,它定义了 map1、map2 方法
CoFlatMapFunction
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/co/CoFlatMapFunction.java
@Public
public interface CoFlatMapFunction<IN1, IN2, OUT> extends Function, Serializable {
void flatMap1(IN1 value, Collector<OUT> out) throws Exception;
void flatMap2(IN2 value, Collector<OUT> out) throws Exception;
}
CoFlatMapFunction 继承了 Function,它定义了 map1、map2 方法,与 CoMapFunction 不同的是,CoFlatMapFunction 的 map1、map2 方法多了 Collector 参数
CoProcessFunction
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/co/CoProcessFunction.java
@PublicEvolving
public abstract class CoProcessFunction<IN1, IN2, OUT> extends AbstractRichFunction {
private static final long serialVersionUID = 1L;
public abstract void processElement1(IN1 value, Context ctx, Collector<OUT> out) throws Exception;
public abstract void processElement2(IN2 value, Context ctx, Collector<OUT> out) throws Exception;
public void onTimer(long timestamp, OnTimerContext ctx, Collector<OUT> out) throws Exception {}
public abstract class Context {
public abstract Long timestamp();
public abstract TimerService timerService();
public abstract <X> void output(OutputTag<X> outputTag, X value);
}
public abstract class OnTimerContext extends Context {
/**
* The {@link TimeDomain} of the firing timer.
*/
public abstract TimeDomain timeDomain();
}
}
CoProcessFunction 继承了 AbstractRichFunction,它定义了 processElement1、processElement2 方法,与 CoFlatMapFunction 不同的是,它定义的这两个方法多了 Context 参数
CoProcessFunction 定义了 Context 及 OnTimerContext,在 processElement1、processElement2 方法可以访问到 Context,Context 提供了 timestamp、timerService、output 方法
CoProcessFunction 与 CoFlatMapFunction 不同的另外一点是它可以使用 TimerService 来注册 timer,然后在 onTimer 方法里头实现响应的逻辑
小结
DataStream 的 connect 操作创建的是 ConnectedStreams 或 BroadcastConnectedStream,它用了两个泛型,即不要求两个 dataStream 的 element 是同一类型
ConnectedStreams 提供了 keyBy 方法用于指定两个 stream 的 keySelector,提供了 map、flatMap、process、transform 操作,其中前三个操作最后都是调用 transform 操作;transform 操作接收 TwoInputStreamOperator 类型的 operator,然后转换为 SingleOutputStreamOperator;map 操作接收 CoMapFunction,flatMap 操作接收 CoFlatMapFunction,process 操作接收 CoProcessFunction
CoFlatMapFunction 与 CoMapFunction 不同的是,CoFlatMapFunction 的 map1、map2 方法多了 Collector 参数;CoProcessFunction 定义了 processElement1、processElement2 方法,与 CoFlatMapFunction 不同的是,它定义的这两个方法多了 Context 参数;CoProcessFunction 与 CoFlatMapFunction 不同的另外一点是它可以使用 TimerService 来注册 timer,然后在 onTimer 方法里头实现响应的逻辑
doc
DataStream Transformations