leetcode375. Guess Number Higher or Lower II

38次阅读

共计 1734 个字符,预计需要花费 5 分钟才能阅读完成。

题目要求
We are playing the Guess Game. The game is as follows:

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I’ll tell you whether the number I picked is higher or lower.

However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:

n = 10, I pick 8.

First round: You guess 5, I tell you that it’s higher. You pay $5.
Second round: You guess 7, I tell you that it’s higher. You pay $7.
Third round: You guess 9, I tell you that it’s lower. You pay $9.

Game over. 8 is the number I picked.

You end up paying $5 + $7 + $9 = $21.
Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.
一个猜数字游戏,数字区间为 1~n,每猜一次,会有人告诉你猜中了或者当前的数字是大于结果值还是小于结果值。猜对则本次猜测免费,猜错则本次猜测需要花费和数字等额的金钱。问如果要确保能够猜中数字,最少要花费多少钱。
其实这题的英文表述有些问题,确切来说,在所有能够确保找到目标值的方法中,找到花费金钱最少的哪种。
思路
我们先用一个比较简单的数字来找规律。当 n 等于 3 时,即从 1,2,3 中找到目标数字,确保找到一个数字至少需要多少钱。查询序列如下:

目标值 3:1,2 2

目标值 2:1,3

目标值 1:3,2,2

可见如果要找到 1,2,3 中任意一个数字,最少要花费 2 元钱,即从 2 开始查询,如果命中,则花费 0 元,如果没有命中也知道目标值比 2 小还是比 2 大,下次猜测一定命中,因此该序列中找到任何一个数字最多花费 2 元钱。
如此可见,假如要知道 min(1,n) 的值,只要找到花费最小的中间点 k,即递归的公式相当于 min(1,n) = k + Math.max(min(1, k-1), min(k+1,n)) 1<=k<= n 找到最小的 min 即可。
思路一:自顶向下的动态规划
public int getMoneyAmount(int n) {
int[][] tmp = new int[n+1][n+1];
for(int[] row: tmp){
Arrays.fill(row, Integer.MAX_VALUE);
}
return getMoneyAmount(n, 1, n, tmp);
}

public int getMoneyAmount(int n, int lft, int rgt, int[][] tmp) {
if(lft>=rgt) return 0;
if(tmp[lft][rgt] != Integer.MAX_VALUE) return tmp[lft][rgt];
for(int i = lft ; i<=rgt ; i++) {
tmp[lft][rgt] = Math.min(tmp[lft][rgt], Math.max(i + getMoneyAmount(n, lft, i-1, tmp), i + getMoneyAmount(n, i+1, rgt, tmp)));
}
return tmp[lft][rgt];
}
思路二:自底向上的动态规划
public int getMoneyAmount(int n) {
int[][] dp = new int[n+1][n+1];
for(int i = 2 ; i<=n ; i++) {
for(int j = i-1 ; j>0 ; j–) {
int min = Integer.MAX_VALUE;
for(int k = j+1 ; k<i ; k++) {
min = Math.min(min, k + Math.max(dp[j][k-1], dp[k+1][i]));
}
dp[j][i] = j + 1 == i ? j : min;
}
}
return dp[1][n];

}

正文完
 0