共计 1304 个字符,预计需要花费 4 分钟才能阅读完成。
797. All Paths From Source to Target
Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows: the nodes are 0, 1, …, graph.length – 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0—>1
| |
v v
2—>3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
The number of nodes in the graph will be in the range [2, 15].
You can print different paths in any order, but you should keep the order of nodes inside one path.
这一题考察的是图的深度优先遍历,要注意的点是:回溯的时候如何清除掉 record 中的数据,只保留到当前节点的数据,之后的数据需要重新填充。刚开始我是用的一个 record,企图通过清空当前节点之后的数据,后来发现不对,record 必须是多个,否则我给 result 添加的 record 就会全部相同。所以只能通过 new 和深拷贝来完成这个目标。
java 代码
class Solution {
List<List<Integer>> result = new LinkedList<List<Integer>>();
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
int index=0;
for(int x:graph[index]){
List<Integer> record = new LinkedList<>();
record.add(0);
record.add(x);
depthFirst(graph, x, record);
}
return result;
}
public void depthFirst(int[][] graph, int index, List<Integer> record){
if(index==graph.length-1){
result.add(record);
return;
}
if(graph[index]==null){
return;
}
for(int x:graph[index]){
record.add(x);
int size = record.size();
depthFirst(graph, x, record);
List<Integer> temp = new LinkedList<Integer>();
for(int i=0;i<size-1;i++){
temp.add(record.get(i));
}
record = temp;
}
}
}