js算法-快速排序(Quicksort)

47次阅读

共计 2174 个字符,预计需要花费 6 分钟才能阅读完成。

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),简称快排,一种排序算法,最早由东尼·霍尔提出。在平均状况下,排序 n 个项目要 O(nLogn) 次比较。在最坏状况下则需要 O(n^2) 次比较,但这种状况并不常见。事实上,快速排序 O(nLogn) 通常明显比其他算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地达成
快速排序可能大家都学过,在面试中也经常会遇到,哪怕你是做前端的也需要会写,这里会列举两种不同的快排代码进行分析
快速排序的 3 个基本步骤:

从数组中选择一个元素作为基准点
排序数组,所有比基准值小的元素摆放在左边,而大于基准值的摆放在右边。每次分割结束以后基准值会插入到中间去。
最后利用递归,将摆放在左边的数组和右边的数组在进行一次上述的 1 和 2 操作。

为了更深入的理解,可以看下面这张图

我们根据上面这张图,来用文字描述一下

选择左右边的元素为基准数,7
将小于 7 的放在左边,大于 7 的放在右边,然后将基准数放到中间
然后再重复操作从左边的数组选择一个基准点 2
3 比 2 大则放到基准树的右边
右边的数组也是一样选择 12 作为基准数,15 比 12 大所以放到了 12 的右边
最后出来的结果就是从左到右 2,3,7,12,15 了

以上就是快速排序基本的一个实现思想。
快速排序实现方式一
这是我最近看到的一种快排代码
var quickSort = function(arr) {
if (arr.length <= 1) {
return arr;
}
var pivotIndex = Math.floor(arr.length / 2);
var pivot = arr.splice(pivotIndex, 1)[0];
var left = [];
var right = [];

for (var i = 0; i < arr.length; i++) {
if (arr[i] < pivot) {
left.push(arr[i]);
} else {
right.push(arr[i]);
}
}
return quickSort(left).concat([pivot], quickSort(right));
};
以上代码的实现方式是,选择一个中间的数字为基准点,用两个数组分别去保存比基准数小的值,和比基准数大的值,最后递归左边的数组和右边的数组,用 concat 去做一个数组的合并。
对于这段代码的分析:缺点:

获取基准点使用了一个 splice 操作,在 js 中 splice 会对数组进行一次拷贝的操作,而它最坏的情况下复杂度为 O(n),而 O(n) 代表着针对数组规模的大小进行了一次循环操作。
首先我们每次执行都会使用到两个数组空间,产生空间复杂度。
concat 操作会对数组进行一次拷贝,而它的复杂度也会是 O(n)
对大量数据的排序来说相对会比较慢

优点:

代码简单明了,可读性强,易于理解
非常适合用于面试笔试题

那么我们接下来用另外一种方式去实现快速排序
快速排序的实现方式二

从上面这张图,我们用一个指针 i 去做了一个分割

初始化 i = -1
循环数组,找到比支点小的数就将 i 向右移动一个位置,同时与下标 i 交换位置
循环结束后,最后将支点与 i + 1 位置的元素进行交换位置
最后我们会得到一个由 i 指针作为分界点,分割成从下标 0 -i,和 i+ 1 到最后一个元素。

下面我们来看一下代码的实现,整个代码分成三部分,数组交换,拆分,qsort(主函数)三个部分
先写最简单的数组交换吧,这个大家应该都懂
function swap(A, i ,j){
const t = A[i];
A[i] = A[j];
A[j] = t;
}
下面是拆分的过程,其实就是对指针进行移动,找到最后指针所指向的位置
/**
*
* @param {*} A 数组
* @param {*} p 起始下标
* @param {*} r 结束下标 + 1
*/
function dvide(A, p, r){
// 基准点
const pivot = A[r-1];

// i 初始化是 -1,也就是起始下标的前一个
let i = p – 1;

// 循环
for(let j = p; j < r-1; j++){
// 如果比基准点小就 i ++,然后交换元素位置
if(A[j] < pivot){
i++;
swap(A, i, j);
}
}
// 最后将基准点插入到 i + 1 的位置
swap(A, i+1, r-1);
// 返回最终指针 i 的位置
return i+1;
}
主程序主要是通过递归去重复的调用进行拆分,一直拆分到只有一个数字。
/**
*
* @param {*} A 数组
* @param {*} p 起始下标
* @param {*} r 结束下标 + 1
*/
function qsort(A, p, r){
r = r || A.length;
if(p < r – 1){
const q = divide(A, p, r);
qsort(A, p, q);
qsort(A, q + 1, r);
}
return A;
}
总结
第二段的排序算法我们减少了两个 O(n) 的操作,得到了一定的性能上的提升,而第一种方法数据规模足够大的情况下会相对来说比较慢一些,快速排序在面试中也常常出现,为了笔试更好写一些可能会有更多的前端会选择第一种方式,但也会有一些为难人的面试官提出一些算法中的问题。而在实际的项目中,我觉得第一种方式可以少用。
推荐
本人最近写的关于数据结构系列如下,欢迎大家看看点个赞哈:js 数据结构 - 栈 js 数据结构 - 链表 js 数据结构 - 队列 js 数据结构 - 二叉树(二叉堆)js 数据结构 - 二叉树(二叉搜索树)

正文完
 0