题目描述
输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变。
解题思路
这道题有两点要求:1. 把所有的奇数调整到偶数前面。2. 要保持稳定性。
像这种要求按一定规则调整顺序的题,都可以看成类似排序的题。在此题中要求奇数在前,偶数在后,我们可以把奇数看成较小的值,偶数是较大的值,相当于对一个只有两种值的数组(例如【1,2,2,1,2,1,2,2,1,2】)进行排序,且要保持稳定性。当这个问题转换成类似数组排序的问题后,就可以用一些常见的排序算法解决此类问题。常见的稳定性排序算法有,冒泡排序、插入排序、归并排序等。以冒泡排序为例分析下解决此题的过程。
假设这个奇偶数组是这样的(为了标识各个奇数间,偶数间相对位置,加上了序号,序号不影响排序过程):
从左至右进行进行第一趟冒泡过程,第一个元素与第二个元素比较,如果左边是奇数右边是偶数(按照上面是思路如果把奇数偶数看成数值的话相当于左边比右边小)无需交换;如果左边是偶数,右边是奇数,则交换两个数;如果都是奇数或偶数,则无需交换。完成第一个元素与第二个元素交换后,再比较第二个元素与第三个元素,重复上面的操作。直到比较完最后两个元素,则第一趟冒泡过程结束。可以得到如下数组:
通过这一趟的冒泡后,在偶数集合中原本就属于最后的元素“偶数 2”被交换到了数组的最后面,而按照题目要求它最终就要处于这个位置。这就是冒泡排序的性质:每趟交换后将最大(或最小)的元素移动到最末尾。既然元素“偶数 2”已经被移动到了题意中要求的位置,就不用再对它操作了,下一趟冒泡过程只需要要操作到倒数第二个元素即可。
重复上面的思路,每次都可以确定一个元素的最终位置,最终所以的元素都可以被交换到固定的位置。最终排序的数组如下所示:
可以看到,完成了冒泡排序之后的数组,所有的奇数都位于偶数前面,且奇数与奇数间,偶数与偶数间相对位置都没改变,符合题意要求。从这道题,可以得到一类题的解题思路。
实现代码
public class Solution {public void reOrderArray(int [] array) {for(int i= 0;i<array.length-1;i++){for(int j=0;j<array.length-1-i;j++){
// 如果左边的元素是偶数,右边的是奇数,则交换他们的位置
if(array[j]%2==0&&array[j+1]%2==1){int t = array[j];
array[j]=array[j+1];
array[j+1]=t;
}
}
}
}
}