prometheus 实质上是一个时序数据库, 再配以 alermanager pushgateway 等子组件, 便可搭建成一个监控平台, 目前曾经是比拟支流的做法, 本文次要介绍一下此组件的简略应用和能够利用到的场景.
官网文档
doc
docker 配置
以 docker-compose 的模式进行配置
prometheus
根本配置
在文件夹新建一个 docker-compose.yml 文件, 将以下内容填入.
version: "3.7"
services:
pro_server:
image: prom/prometheus # 官网镜像
ports:
- "9090:9090"
volumes:
- ./prometheus:/prometheus # 用于存储 Prometheus 的状态, 下次启动能够连续
- ./docker/prometheus.yml:/etc/prometheus/prometheus.yml # 内部传入 Prometheus 配置
解下来新建 ./ 这是 prometheus
文件夹, 新建 ./docker/prometheus.yml
文件, 写入以下信息
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
#alertmanagers:
#- static_configs:
#- targets:
#- pro_alert_manager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']
prometheus 的主体服务, docker-compose up
的话, 就能够在浏览器进行 Prometheus 的初体验了.
这个配置文件是 Prometheus 的默认配置, 能够看到它本人申明了一个 job: prometheus
, 外面监听了本人的 9090 端口. 你能够自行察看 /metrics 接口内的数据, 领会一下数据结构.
# HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 7.3e-06
go_gc_duration_seconds{quantile="0.25"} 8.8e-06
go_gc_duration_seconds{quantile="0.5"} 9.3e-06
go_gc_duration_seconds{quantile="0.75"} 0.000120499
go_gc_duration_seconds{quantile="1"} 0.000344099
go_gc_duration_seconds_sum 0.001536996
go_gc_duration_seconds_count 20
...
轻易指指点点吧.
场景: 接口监听
这种场景就如同下面的默认配置一样, Prometheus 会周期性 pull 接口, 取得 metrics 信息, 写入到本人的时序数据库中.
当初本人开发一个测试接口, 配置到 pomethus 中.
以 python 举例
import flask
import random
app = flask.Flask(__name__)
@app.route('/metrics', methods=['GET'])
def hello():
return f'suzumiya {{quantile="0.75"}} {random.random()}\nkyo {{quantile="0.5"}} {random.random()}'
if __name__ == '__main__':
app.run('0.0.0.0', 12300)
这个 metrics 接口模拟了默认接口的数据, 接下来, 配置到 Prometheus 的配置文件中.
在 ./docker/prometheus.yml
的开端, 增加以下内容
- job_name: 'test'
static_configs:
- targets: ['10.23.51.15:12300'] # 请改成本人的内网 / 外网 IP,
labels:
instance: 'test'
接下来重启我的项目. 便能够在页面上找到本人新加的指标.
alertmanager
对于一个监控平台来说, 告警是必不可少的. alertmanager 便是来做这件事
根本配置
在 docker-compose.yml
文件中, 增加以下内容
pro_alert_manager:
image: prom/alertmanager
ports:
- "9093:9093"
volumes:
- ./alertmanager:/alertmanager # 用于放弃状态
- ./docker/alertmanager.yml:/etc/alertmanager/alertmanager.yml # 内部传入配置文件
新建 ./docker/alertmanager.yml
文件, 填入以下内容
global:
resolve_timeout: 5m
smtp_smarthost:
smtp_from:
smtp_auth_username:
smtp_auth_password:
route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h
receiver: 'mememe'
receivers:
- name: 'mememe'
#webhook_configs:
#- url: 'http://127.0.0.1:5001/'
email_configs:
- to: 'xxx@xxx.com' # 批改接管
inhibit_rules:
- source_match:
severity: 'critical'
target_match:
severity: 'warning'
equal: ['alertname', 'dev', 'instance']
把邮件的配置填入下面相应的空上.
告警其实这里就配置完了, 然而不触发也就没有成果. 于是咱们来配置一个规定, 用于监听 test 接口
将以下内容, 填入 ./docker/prometheus.yml
文件.
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
- pro_alert_manager:9093 # docker 会 server 名主动映射成 host
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
- "test_rule.yml" # 还不存在的配置文件
# - "first_rules.yml"
# - "second_rules.yml"
接下来是主体的规定配置, 批改 docker-compose.yml
文件, 增加内部配置文件映射
pro_server:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./prometheus:/prometheus
- ./docker/prometheus.yml:/etc/prometheus/prometheus.yml
- ./docker/test_rule.yml:/etc/prometheus/test_rule.yml # 新加的映射
新建 ./docker/test_rule.yml
文件, 填入以下内容
groups:
- name: test-alert
rules:
- alert: HttpTestDown
expr: sum(up{job="test"}) == 0
for: 10s
labels:
severity: critical
重启我的项目, 此时不会有报警,
如果你的 test server 服务还开着的话. 那么将 test server 关掉. 很快应该就会收到一封邮件了.
pushgateway
这个组件能够简略了解成一个打点服务器, 你对这个组件发申请, 这个组件再推送到 Prometheus 中.
根本配置
批改docker-compose.yml
, 增加以下内容:
pro_push_gateway:
image: prom/pushgateway
ports:
- "9091:9091"
volumes:
- ./pushgateway:/pushgateway # 感觉删掉也行, gateway 如同无状态
批改./docker/prometheus.yml
, 增加 pushgateway 为 job
- job_name: 'pushgateway'
static_configs:
- targets: ['pro_push_gateway:9091'] # docker 会将 server 映射为 host
labels:
instance: 'pushgateway'
之后重启我的项目, gateway 就能够失效了.
调用的形式有很多种, 这里作为测试选用最简略的 curl 形式.
echo "suzumiya 1000" | curl --data-binary @- http://127.0.0.1:9091/metrics/job/test
echo "suzumiya 2000" | curl --data-binary @- http://127.0.0.1:9091/metrics/job/test
echo "suzumiya 3000" | curl --data-binary @- http://127.0.0.1:9091/metrics/job/test
轻易推推, 就能够在 Prometheus 中看到相应数据了.
场景: 事件打点
基于这个 pushgateway, 咱们能够由服务本人向 promethus 推送相应的数据, 比拟直观的利用, 就是事件打点. 咱们能够将感兴趣的事件推送到 promethus 上, 用 alertmanager 去监控, 又或者连贯 granfana 做一个简略的时序看板.
残缺配置文件
./docker-compose.yml
version: "3.7"
services:
pro_server:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./prometheus:/prometheus
- ./docker/prometheus.yml:/etc/prometheus/prometheus.yml
- ./docker/test_rule.yml:/etc/prometheus/test_rule.yml
pro_push_gateway:
image: prom/pushgateway
ports:
- "9091:9091"
volumes:
- ./pushgateway:/pushgateway
pro_alert_manager:
image: prom/alertmanager
ports:
- "9093:9093"
volumes:
- ./alertmanager:/alertmanager
- ./docker/alertmanager.yml:/etc/alertmanager/alertmanager.yml
./docker/prometheus.yml
version: "3.7"
services:
pro_server:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./prometheus:/prometheus
- ./docker/prometheus.yml:/etc/prometheus/prometheus.yml
- ./docker/test_rule.yml:/etc/prometheus/test_rule.yml
pro_push_gateway:
image: prom/pushgateway
ports:
- "9091:9091"
volumes:
- ./pushgateway:/pushgateway
pro_alert_manager:
image: prom/alertmanager
ports:
- "9093:9093"
volumes:
- ./alertmanager:/alertmanager
- ./docker/alertmanager.yml:/etc/alertmanager/alertmanager.yml
./docker/alertmanager.yml
global:
resolve_timeout: 5m
smtp_smarthost:
smtp_from:
smtp_auth_username:
smtp_auth_password:
route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h
receiver: 'mememe'
receivers:
- name: 'mememe'
#webhook_configs:
#- url: 'http://127.0.0.1:5001/'
email_configs:
- to: 'xxxx@xxx.com'
inhibit_rules:
- source_match:
severity: 'critical'
target_match:
severity: 'warning'
equal: ['alertname', 'dev', 'instance']
./docker/test_rule.yml
groups:
- name: test-alert
rules:
- alert: HttpTestDown
expr: sum(up{job="test"}) == 0
for: 10s
labels:
severity: critical
over
下面只是小试牛刀. 能够发现配置一个监控平台并不难. 相比拟以前本人去一遍又一遍独自写告警, 这种对立的接口监听事件打点要更跨平台, 也更优雅. 这个组件还有很多值得去学习挖掘的货色. 在有监控相干需要的时候, 无妨思考下, Prometheus 做不做失去?
owari.