共计 9003 个字符,预计需要花费 23 分钟才能阅读完成。
虽然 python 或 r 编程语言有一个相对容易的学习曲线,但是 Web 开发人员更喜欢在他们舒适的 javascript 区域内做事情。目前来看,node.js 已经开始向每个领域应用 javascript,在这一大趋势下我们需要理解并使用 JS 进行机器学习。由于可用的软件包数量众多,python 变得流行起来,但是 JS 社区也紧随其后。这篇文章会帮助初学者学习如何构建一个简单的分类器。
扩展:2019 年 11 个 javascript 机器学习库
很棒的机器学习库,可以在你的下一个应用程序中添加一些人工智能!
Big.bitsrc.io
创建
我们可以创建一个使用 tensorflow.js 在浏览器中训练模型的网页。考虑到房屋的“avgareanumberofrows”,模型可以学习去预测房屋的“价格”。
为此我们要做的是:
加载数据并为培训做好准备。
定义模型的体系结构。
训练模型并在训练时监控其性能。
通过做出一些预测来评估经过训练的模型。
第一步:让我们从基础开始
创建一个 HTML 页面并包含 JavaScript。将以下代码复制到名为 index.html 的 HTML 文件中。
<!DOCTYPE html>
<html>
<head>
<title>TensorFlow.js Tutorial</title>
<!-- Import TensorFlow.js -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.0.0/dist/tf.min.js"></script>
<!-- Import tfjs-vis -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>
<!-- Import the main script file -->
<script src="script.js"></script>
</head>
<body>
</body>
</html>
为代码创建 javascript 文件
在与上面的 HTML 文件相同的文件夹中,创建一个名为 script.js 的文件,并将以下代码放入其中。
console.log('Hello TensorFlow');
测试
既然已经创建了 HTML 和 JavaScript 文件,那么就测试一下它们。在浏览器中打开 index.html 文件并打开 devtools 控制台。
如果一切正常,那么应该在 devtools 控制台中创建并可用两个全局变量:
- tf 是对 tensorflow.js 库的引用
- tfvis 是对 tfjs vis 库的引用
现在你应该可以看到一条消息,上面写着“Hello TensorFlow”。如果是这样,你就可以继续下一步了。
注意:可以使用 Bit 来共享可重用的 JS 代码
Bit(GitHub 上的 Bit)是跨项目和应用程序共享可重用 JavaScript 代码的最快和最可扩展的方式。可以试一试,它是免费的:
组件发现与协作·Bit
Bit 是开发人员共享组件和协作,共同构建令人惊叹的软件的地方。发现共享的组件…
Bit.dev
例如:Ramda 用作共享组件
Ramda by Ramda·Bit
一个用于 JavaScript 程序员的实用函数库。-256 个 javascript 组件。例如:等号,乘…
Bit.dev
第 2 步:加载数据,格式化数据并可视化输入数据
我们将加载“house”数据集,可以在这里找到。它包含了特定房子的许多不同特征。对于本教程,我们只需要有关房间平均面积和每套房子价格的数据。
将以下代码添加到 script.js 文件中。
async function getData() {
Const houseDataReq=await
fetch('https://raw.githubusercontent.com/meetnandu05/ml1/master/house.json');
const houseData = await houseDataReq.json();
const cleaned = houseData.map(house => ({
price: house.Price,
rooms: house.AvgAreaNumberofRooms,
}))
.filter(house => (house.price != null && house.rooms != null));
return cleaned;
}
这可以删除没有定义价格或房间数量的任何条目。我们可以将这些数据绘制成散点图,看看它是什么样子的。
将以下代码添加到 script.js 文件的底部。
async function run() {
// Load and plot the original input data that we are going to train on.
const data = await getData();
const values = data.map(d => ({
x: d.rooms,
y: d.price,
}));
tfvis.render.scatterplot({name: 'No.of rooms v Price'},
{values},
{
xLabel: 'No. of rooms',
yLabel: 'Price',
height: 300
}
);
// More code will be added below
}
document.addEventListener('DOMContentLoaded', run);
刷新页面时,你可以在页面左侧看到一个面板,上面有数据的散点图,如下图。
通常,在处理数据时,最好找到方法来查看数据,并在必要时对其进行清理。可视化数据可以让我们了解模型是否可以学习数据的任何结构。
从上面的图中可以看出,房间数量与价格之间存在正相关关系,即随着房间数量的增加,房屋价格普遍上涨。
第三步:建立待培训的模型
这一步我们将编写代码来构建机器学习模型。模型主要基于此代码进行架构,所以这是一个比较重要的步骤。机器学习模型接受输入,然后产生输出。对于 tensorflow.js,我们必须构建神经网络。
将以下函数添加到 script.js 文件中以定义模型。
function createModel() {
// Create a sequential model
const model = tf.sequential();
// Add a single hidden layer
model.add(tf.layers.dense({inputShape: [1], units: 1, useBias: true}));
// Add an output layer
model.add(tf.layers.dense({units: 1, useBias: true}));
return model;
}
这是我们可以在 tensorflow.js 中定义的最简单的模型之一,我们来试下简单分解每一行。
实例化模型
const model = tf.sequential();
这将实例化一个 tf.model 对象。这个模型是连续的,因为它的输入直接流向它的输出。其他类型的模型可以有分支,甚至可以有多个输入和输出,但在许多情况下,你的模型是连续的。
添加层
model.add(tf.layers.dense({inputShape: [1], units: 1, useBias: true}));
这为我们的网络添加了一个隐藏层。因为这是网络的第一层,所以我们需要定义我们的输入形状。输入形状是 [1],因为我们有 1 这个数字作为输入(给定房间的房间数)。
单位(链接)设置权重矩阵在层中的大小。在这里将其设置为 1,我们可以说每个数据输入特性都有一个权重。
model.add(tf.layers.dense({units: 1}));
上面的代码创建了我们的输出层。我们将单位设置为 1,因为我们要输出 1 这个数字。
创建实例
将以下代码添加到前面定义的运行函数中。
// Create the model
const model = createModel();
tfvis.show.modelSummary({name: 'Model Summary'}, model);
这样可以创建实例模型,并且在网页上有显示层的摘要。
步骤 4:为创建准备数据
为了获得 TensorFlow.js 的性能优势,使培训机器学习模型实用化,我们需要将数据转换为 Tensors。
将以下代码添加到 script.js 文件中。
function convertToTensor(data) {return tf.tidy(() => {
// Step 1\. Shuffle the data
tf.util.shuffle(data);
// Step 2\. Convert data to Tensor
const inputs = data.map(d => d.rooms)
const labels = data.map(d => d.price);
const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]);
const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
//Step 3\. Normalize the data to the range 0 - 1 using min-max scaling
const inputMax = inputTensor.max();
const inputMin = inputTensor.min();
const labelMax = labelTensor.max();
const labelMin = labelTensor.min();
const normalizedInputs = inputTensor.sub(inputMin).div(inputMax.sub(inputMin));
const normalizedLabels = labelTensor.sub(labelMin).div(labelMax.sub(labelMin));
return {
inputs: normalizedInputs,
labels: normalizedLabels,
// Return the min/max bounds so we can use them later.
inputMax,
inputMin,
labelMax,
labelMin,
}
});
}
接下来,我们可以分析一下将会出现什么情况。
随机播放数据
// Step 1\. Shuffle the data
tf.util.shuffle(data);
在训练模型的过程中,数据集被分成更小的集合,每个集合称为一个批。然后将这些批次送入模型运行。整理数据很重要,因为模型不应该一次又一次地得到相同的数据。如果模型一次又一次地得到相同的数据,那么模型将无法归纳数据,并为运行期间收到的输入提供指定的输出。洗牌将有助于在每个批次中拥有各种数据。
转换为 Tensor
// Step 2\. Convert data to Tensor
const inputs = data.map(d => d.rooms)
const labels = data.map(d => d.price);
const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]);
const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
这里我们制作了两个数组,一个用于输入示例(房间条目数),另一个用于实际输出值(在机器学习中称为标签,在我们的例子中是每个房子的价格)。然后我们将每个数组数据转换为一个二维张量。
规范化数据
//Step 3\. Normalize the data to the range 0 - 1 using min-max scaling
const inputMax = inputTensor.max();
const inputMin = inputTensor.min();
const labelMax = labelTensor.max();
const labelMin = labelTensor.min();
const normalizedInputs = inputTensor.sub(inputMin).div(inputMax.sub(inputMin));
const normalizedLabels = labelTensor.sub(labelMin).div(labelMax.sub(labelMin));
接下来,我们规范化数据。在这里,我们使用最小 - 最大比例将数据规范化为数值范围 0 -1。规范化很重要,因为您将使用 tensorflow.js 构建的许多机器学习模型的内部设计都是为了使用不太大的数字。规范化数据以包括 0 到 1 或 - 1 到 1 的公共范围。
返回数据和规范化界限
return {
inputs: normalizedInputs,
labels: normalizedLabels,
// Return the min/max bounds so we can use them later.
inputMax,
inputMin,
labelMax,
labelMin,
}
我们可以在运行期间保留用于标准化的值,这样我们就可以取消标准化输出,使其恢复到原始规模,我们就可以用同样的方式规范化未来的输入数据。
步骤 5:运行模型
通过创建模型实例、将数据表示为张量,我们可以准备开始运行模型。
将以下函数复制到 script.js 文件中。
async function trainModel(model, inputs, labels) {
// Prepare the model for training.
model.compile({optimizer: tf.train.adam(),
loss: tf.losses.meanSquaredError,
metrics: ['mse'],
});
const batchSize = 28;
const epochs = 50;
return await model.fit(inputs, labels, {
batchSize,
epochs,
shuffle: true,
callbacks: tfvis.show.fitCallbacks({ name: 'Training Performance'},
['loss', 'mse'],
{height: 200, callbacks: ['onEpochEnd'] }
)
});
}
我们把它分解一下。
准备运行
// Prepare the model for training.
model.compile({optimizer: tf.train.adam(),
loss: tf.losses.meanSquaredError,
metrics: ['mse'],
});
我们必须在训练前“编译”模型。要做到这一点,我们必须明确一些非常重要的事情:
优化器:这是一个算法,它可以控制模型的更新,就像上面看到的例子一样。TensorFlow.js 中有许多可用的优化器。这里我们选择了 Adam 优化器,因为它在实践中非常有效,不需要进行额外配置。
损失函数:这是一个函数,它用于检测模型所显示的每个批(数据子集)方面完成的情况如何。在这里,我们可以使用 meansquaredrror 将模型所做的预测与真实值进行比较。
度量:这是我们要在每个区块结束时用来计算的度量数组。我们可以用它计算整个训练集的准确度,这样我们就可以检查自己的运行结果了。这里我们使用 mse,它是 meansquaredrror 的简写。这是我们用于损失函数的相同函数,也是回归任务中常用的函数。
const batchSize = 28;
const epochs = 50;
接下来,我们选择一个批量大小和一些时间段:
batchSize 指的是模型在每次运行迭代时将看到的数据子集的大小。常见的批量大小通常在 32-512 之间。对于所有问题来说,并没有一个真正理想的批量大小,描述各种批量大小的精确方式这一知识点本教程没有相关讲解,对这些有兴趣可以通过别的渠道进行了解学习。
epochs 指的是模型将查看你提供的整个数据集的次数。在这里,我们通过数据集进行 50 次迭代。
启动列车环路
return model.fit(inputs, labels, {
batchSize,
epochs,
callbacks: tfvis.show.fitCallbacks({ name: 'Training Performance'},
['loss', 'mse'],
{
height: 200,
callbacks: ['onEpochEnd']
}
)
});
model.fit 是我们调用的启动循环的函数。它是一个异步函数,因此我们返回它给我们的特定值,以便调用者可以确定运行结束时间。
为了监控运行进度,我们将一些回调传递给 model.fit。我们使用 tfvis.show.fitcallbacks 生成函数,这些函数可以为前面指定的“损失”和“毫秒”度量绘制图表。
把它们放在一起
现在我们必须调用从运行函数定义的函数。
将以下代码添加到运行函数的底部。
// Convert the data to a form we can use for training.
const tensorData = convertToTensor(data);
const {inputs, labels} = tensorData;
// Train the model
await trainModel(model, inputs, labels);
console.log('Done Training');
刷新页面时,几秒钟后,你应该会看到图形正在更新。
这些是由我们之前创建的回调创建的。它们在每个时代结束时显示丢失(在最近的批处理上)和毫秒(在整个数据集上)。
当训练一个模型时,我们希望看到损失减少。在这种情况下,因为我们的度量是一个误差度量,所以我们希望看到它也下降。
第 6 步:做出预测
既然我们的模型经过了训练,我们想做一些预测。让我们通过观察它预测的低到高数量房间的统一范围来评估模型。
将以下函数添加到 script.js 文件中
function testModel(model, inputData, normalizationData) {const {inputMax, inputMin, labelMin, labelMax} = normalizationData;
// Generate predictions for a uniform range of numbers between 0 and 1;
// We un-normalize the data by doing the inverse of the min-max scaling
// that we did earlier.
const [xs, preds] = tf.tidy(() => {const xs = tf.linspace(0, 1, 100);
const preds = model.predict(xs.reshape([100, 1]));
const unNormXs = xs
.mul(inputMax.sub(inputMin))
.add(inputMin);
const unNormPreds = preds
.mul(labelMax.sub(labelMin))
.add(labelMin);
// Un-normalize the data
return [unNormXs.dataSync(), unNormPreds.dataSync()];
});
const predictedPoints = Array.from(xs).map((val, i) => {return {x: val, y: preds[i]}
});
const originalPoints = inputData.map(d => ({x: d.rooms, y: d.price,}));
tfvis.render.scatterplot({name: 'Model Predictions vs Original Data'},
{values: [originalPoints, predictedPoints], series: ['original', 'predicted']},
{
xLabel: 'No. of rooms',
yLabel: 'Price',
height: 300
}
);
}
在上面的函数中需要注意的一些事情。
const xs = tf.linspace(0, 1, 100);
const preds = model.predict(xs.reshape([100, 1]));
我们生成 100 个新的“示例”以提供给模型。model.predict 是我们如何将这些示例输入到模型中的。注意,他们需要有一个类似的形状([num_的例子,num_的特点每个_的例子])当我们做培训时。
// Un-normalize the data
const unNormXs = xs
.mul(inputMax.sub(inputMin))
.add(inputMin);
const unNormPreds = preds
.mul(labelMax.sub(labelMin))
.add(labelMin);
为了将数据恢复到原始范围(而不是 0–1),我们使用规范化时计算的值,但只需反转操作。
return [unNormXs.dataSync(), unNormPreds.dataSync()];
.datasync()是一种方法,我们可以使用它来获取存储在张量中的值的 typedarray。这允许我们在常规的 javascript 中处理这些值。这是通常首选的.data()方法的同步版本。
最后,我们使用 tfjs-vis 来绘制原始数据和模型中的预测。
将以下代码添加到运行函数中。
testModel(model, data, tensorData);
刷新页面,现在已经完成啦!
现在你已经学会使用 tensorflow.js 创建一个简单的机器学习模型了。这里是 Github 存储库供参考。
结论
我开始接触这些是因为机器学习的概念非常吸引我,还有就是我想看看有没有方法可以让它在前端开发中实现,我很高兴发现 tensorflow.js 库可以帮助我实现我的目标。这只是前端开发中机器学习的开始,TensorFlow.js 还可以完成很多工作。谢谢你的阅读!
本文作者:【方向】
阅读原文
本文为云栖社区原创内容,未经允许不得转载。