ThreadPoolExecutor
ThreadPoolExecutor 是所有线程池实现的父类,我们先看看构造函数
构造参数
- corePoolSize:线程核心数
- maximumPoolSize:最大线程数
- keepAliveTime:线程空闲后,存活的时间,只有线程数大于 corePoolSize 的时候生效
- unit:存活时间的单位
- workQueue:任务的阻塞队列
- threadFactory:创建线程的工程,给线程起名字
- handler:当线程池满了,选择新加入的任务应该使用什么策略,比如抛异常、丢弃当前任务、丢弃阻塞队列的最老任务等,也可以自定义。
流程
- 判断是否超过线程核心数 corePoolSize,没超过创建线程
- 超过线程核心数,则判断队列是否已满,没有满,放入队列
- 队列也满了,判断是否超过 maximumPoolSize,没有就创建线程
- 超过了,根据策略执行
源码解析
//32 为,前 3 位作为线程池的状态,后三位是线程数
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;//28
private static final int CAPACITY = (1 << COUNT_BITS) - 1;00011111 11111111 11111111 11111110
//- 1 的二进制是 11111111 11111111 11111111 11111111
private static final int RUNNING = -1 << COUNT_BITS;//- 1 如上,左移 28 位后,就是 111000000 00000000 00000000 00000000
private static final int SHUTDOWN = 0 << COUNT_BITS;// 0 左移 28 位,还是 0,00000000 00000000 00000000 00000000
private static final int STOP = 1 << COUNT_BITS;//00100000 00000000 00000000 00000000
private static final int TIDYING = 2 << COUNT_BITS;//01000000 00000000 00000000 00000000
private static final int TERMINATED = 3 << COUNT_BITS;//01100000 00000000 00000000 00000000
private static int runStateOf(int c) {return c & ~CAPACITY;}//~CAPACITY 为 11100000000000000000000000000000,与完就是线程的状态
private static int workerCountOf(int c) {return c & CAPACITY;}// 与完,是线程的数量
private static int ctlOf(int rs, int wc) {return rs | wc;}
private static boolean isRunning(int c) {return c < SHUTDOWN;// 小于 0,说明是 RUNNING,RUNNING=-1}
execute 方法
public void execute(Runnable command) {if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {// 如果线程数少于线程核心数
if (addWorker(command, true))// 增加任务成功,返回 true,没成功,继续往下
return;
c = ctl.get();}
// 判断队列
if (isRunning(c) && workQueue.offer(command)) {// 如果线程池还在跑,并且可以插入队列
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))// 线程池不是运行状态,就移除刚刚插入的任务
reject(command);// 执行策略
else if (workerCountOf(recheck) == 0)//
addWorker(null, false);
}
// 队列也满了,判断最大线程数
else if (!addWorker(command, false))
reject(command);// 执行策略
}
addWorker 方法
private boolean addWorker(Runnable firstTask, boolean core) {//core 为 true,使用 corePoolSize 判断,否则使用 maximumPoolSize
retry:
for (;;) {int c = ctl.get();
int rs = runStateOf(c);// 获取当前线程状态
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && // 就是 STOP、TIDYING、TERMINATED,此时不让任务进来
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))//
return false;
for (;;) {int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;// 超过了线程核心数或最大线程数,不让新增
if (compareAndIncrementWorkerCount(c))// 返回 true,说明成功了,跳出 retry 循环
break retry;
// 失败了,说明被其他符号条件的线程占了,就再判断线程状态是否跟之前一样,不一样重新获取,跳到 retry
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();// 获取锁
try {int rs = runStateOf(ctl.get());// 获取线程池的状态
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {if (t.isAlive()) // 没通过 start 来启动 run 的
throw new IllegalThreadStateException();
workers.add(w);// 加点 hashset
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;// 更新当前最大值
workerAdded = true;// 增加成功
}
} finally {mainLock.unlock();
}
if (workerAdded) {t.start();// 启动线程
workerStarted = true;// 启动成功
}
}
} finally {if (! workerStarted)
addWorkerFailed(w);// 失败,线程数 -1,从 hashset 移除,并尝试 Terminate
}
return workerStarted;
}
runWorker 方法
上面执行 t.start(); 的时候,就会通过 run 方法调用下面的方法
final void runWorker(Worker w) {Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {while (task != null || (task = getTask()) != null) {// 任务不为空或者获取的任务也不为空
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {beforeExecute(wt, task);
Throwable thrown = null;
try {task.run();// 调用 run 方法,这里没有通过 start,也就是说没有启动新线程
} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);
} finally {afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;// 完成任务数加 1
w.unlock();// 释放}
}
completedAbruptly = false;
} finally {processWorkerExit(w, completedAbruptly);// 移除 w,在 task 为空的时候,比如线程池状态停止或者启动的线程太多
}
}
getTask 方法
当 Worker 第一次启动的时候,调用 run 方法,后面就一直从队列里获取任务
private Runnable getTask() {boolean timedOut = false; // Did the last poll() time out?
for (;;) {int c = ctl.get();
int rs = runStateOf(c);// 获取当前线程池状态
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {//
decrementWorkerCount();// 线程数量 -1
return null;
}
int wc = workerCountOf(c);// 线程数
//allowCoreThreadTimeOut 为 true,说明线程数要根据是否超过核心线程数判断 keepAliveTime
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;// 是否超过核心线程数
if ((wc > maximumPoolSize || (timed && timedOut))// 超过了最大线程数
&& (wc > 1 || workQueue.isEmpty())) {if (compareAndDecrementWorkerCount(c))// 线程数 -1
return null;// 返回空
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();// 获取任务
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {timedOut = false;}
}
}