乐趣区

关于源码分析:JUC一图看懂ReentrantLock加解锁逻辑

应用样例

ThreadA、ThreadB、ThreadC 拜访如下逻辑
ReentrantLock lock = new ReentrantLock();
// == 1. 加锁
lock.lock();

... 省略业务解决...

// == 2. 开释
lock.unlock();

非偏心加锁过程

偏心形式,无 ThreadD 局部逻辑,会间接入队

后续都在具体解释这张图

一、非偏心加锁

1. 状态批改

// ## 状态:拜访线程会采纳 cas 的形式批改 state 的值,加锁过程 0 ->1
private volatile int state;
// ## 持有线程:state 批改胜利的线程,将被记录。比方,exclusiveOwnerThread=ThreadA
private transient Thread exclusiveOwnerThread;


# NonfairSync 非偏心实现
final void lock() {
    // == 1.cas 批改 state 状态 0->1(插队 1)if (compareAndSetState(0, 1))
        // state 批改胜利批改持有线程 exclusiveOwnerThread = ThreadA
        setExclusiveOwnerThread(Thread.currentThread());
    else
        // == 2. 构建队列,并阻塞线程
        acquire(1);
}

2. 队列构建

### public final void acquire(int arg) {
    // a- 尝试获取,尝试批改 state 状态(未获取胜利持续后续逻辑)if (!tryAcquire(arg) 
            // b2- 排队获取
            && acquireQueued(
                // b1- 新增期待节点,构建“独占”模式队列
                addWaiter(Node.EXCLUSIVE), arg))
                
        selfInterrupt();}

a- 尝试获取(可能插队的地位)

java.util.concurrent.locks.ReentrantLock.NonfairSync#tryAcquire
java.util.concurrent.locks.ReentrantLock.Sync#nonfairTryAcquire
final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();
    int c = getState();
    // ## 插队地位
    if (c == 0) {if (compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);
            return true;
        }
    }
    // ## 重入,state++
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

b1- 新增期待节点,构建“独占”模式队列

class Node {

    /** 独占 */
    static final Node EXCLUSIVE = null;
    // 指向线程
    volatile Thread thread;
    volatile Node prev;
    volatile Node next;
    
   static final int SIGNAL    = -1;
java.util.concurrent.locks.AbstractQueuedSynchronizer#addWaiter
private Node addWaiter(Node mode) {Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    // == 2. 队列不为空,节点尾插
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    // == 1. 队列初始构建
    enq(node);
    return node; // 返回尾节点
}

//== 1. 队列初始构建
java.util.concurrent.locks.AbstractQueuedSynchronizer#enq
private Node enq(final Node node) {for (;;) {
        Node t = tail;
        // -- A、初始化构建,头尾指针指向空 Node
        if (t == null) {if (compareAndSetHead(new Node()))
                tail = head;
        } 
        // -- B、尾插
        else {
            node.prev = t;
            // cas 批改尾节点指向
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t; // 返回头节点
            }
        }
    }
}

b2- 排队获取

java.util.concurrent.locks.AbstractQueuedSynchronizer#acquireQueued
final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        // 循环中
        for (;;) {final Node p = node.predecessor();
            // ### 前置节点是头节点,有机会尝试获取
            //(联合下一个 if 判断,会自旋两次,也就是说有两次尝试获取机会)if (p == head && tryAcquire(arg)) {setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            // ### 第 1 次将 waitstatus 设置成 signal 返回 false 
            // ###    第 2 次判断 waitstatus==signal 返回 true
            if (shouldParkAfterFailedAcquire(p, node) 
                    // === 线程阻塞(将来唤醒时,从此处继续执行)&& parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {if (failed)
            cancelAcquire(node);
    }
}

###
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    // -- 第二次调用
    if (ws == Node.SIGNAL)
        return true;
    
    if (ws > 0) {
        do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);
        pred.next = node;
    } 
    // -- 第一次调用
    else {compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

===
private final boolean parkAndCheckInterrupt() {LockSupport.park(this);
    // 以后线程是否被中断
    return Thread.interrupted();}

二、开释

java.util.concurrent.locks.ReentrantLock#unlock
java.util.concurrent.locks.AbstractQueuedSynchronizer#release
{
    // == 1.state 还原,exclusiveOwnerThread 清空
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            // == 2.“解除阻塞”执行胜利的节点
            unparkSuccessor(h);
        return true;
    }
    return false;
}

1.state 还原,exclusiveOwnerThread 清空

protected final boolean tryRelease(int releases) {
    // 加锁时线程重入,state++。因而解锁时,state--
    int c = getState() - releases;
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    // state 归 0 时,开释线程援用
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}

2.“解除阻塞”执行胜利的节点

private void unparkSuccessor(Node node) {

    int ws = node.waitStatus;
    // 加锁时,ws=SIGNAL,也就是 -1。当初改成 0
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);

    /*
     * Thread to unpark is held in successor, which is normally
     * just the next node.  But if cancelled or apparently null,
     * traverse backwards from tail to find the actual
     * non-cancelled successor.
     */
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    // ## 开释 s 节点,也就是 head 的下一个节点
    if (s != null)
        LockSupport.unpark(s.thread);
}

三、偏心加锁

差异一

# FairSync 偏心实现
final void lock() {
    // 无插队操作,间接构建队列
    acquire(1);
}

再比照下刚刚的非偏心实现,只有 else 局部

# NonfairSync 非偏心实现
final void lock() {
    // == 1.cas 批改 state 状态 0->1(插队 1)if (compareAndSetState(0, 1))
        // state 批改胜利批改持有线程 exclusiveOwnerThread = ThreadA
        setExclusiveOwnerThread(Thread.currentThread());
        
    ### 偏心实现只有这部分逻辑  
    else
        // == 2. 构建队列,并阻塞线程
        acquire(1);
}

差异二

public final void acquire(int arg) {if (!tryAcquire(arg) 
            && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();}

protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {// ### 偏心实现(多了!hasQueuedPredecessors()):要求无排队状况才有资格尝试进行后续 cas 操作
            if (!hasQueuedPredecessors()
                    && compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
}
退出移动版