简介:利用级扩缩容是绝对于运维级而言的。像监控 CPU/ 内存的利用率就属于利用无关的纯运维指标,针对这种指标进行扩缩容的 HPA 配置就是运维级扩缩容。而像申请数量、申请提早、P99 散布等指标就属于利用相干的,或者叫业务感知的监控指标。本篇将介绍 3 种利用级监控指标在 HPA 中的配置,以实现利用级主动扩缩容。
利用级扩缩容是绝对于运维级而言的。像监控 CPU/ 内存的利用率就属于利用无关的纯运维指标,针对这种指标进行扩缩容的 HPA 配置就是运维级扩缩容。而像申请数量、申请提早、P99 散布等指标就属于利用相干的,或者叫业务感知的监控指标。
本篇将介绍 3 种利用级监控指标在 HPA 中的配置,以实现利用级主动扩缩容。
Setup HPA
1 部署 metrics-adapter
执行如下命令部署 kube-metrics-adapter(残缺脚本参见:demo\_hpa.sh)。:
helm --kubeconfig "$USER_CONFIG" -n kube-system install asm-custom-metrics \
$KUBE_METRICS_ADAPTER_SRC/deploy/charts/kube-metrics-adapter \
--set prometheus.url=http://prometheus.istio-system.svc:9090
执行如下命令验证部署状况:
# 验证 POD
kubectl --kubeconfig "$USER_CONFIG" get po -n kube-system | grep metrics-adapter
asm-custom-metrics-kube-metrics-adapter-6fb4949988-ht8pv 1/1 Running 0 30s
#验证 CRD
kubectl --kubeconfig "$USER_CONFIG" api-versions | grep "autoscaling/v2beta"
autoscaling/v2beta1
autoscaling/v2beta2
#验证 CRD
kubectl --kubeconfig "$USER_CONFIG" get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq .
{
"kind": "APIResourceList",
"apiVersion": "v1",
"groupVersion": "external.metrics.k8s.io/v1beta1",
"resources": []}
2 部署 loadtester
执行如下命令部署 flagger loadtester:
kubectl --kubeconfig "$USER_CONFIG" apply -f $FLAAGER_SRC/kustomize/tester/deployment.yaml -n test
kubectl --kubeconfig "$USER_CONFIG" apply -f $FLAAGER_SRC/kustomize/tester/service.yaml -n test
3 部署 HPA
3.1 依据利用申请数量扩缩容
首先咱们创立一个感知 利用申请数量 (istio_requests_total
) 的 HorizontalPodAutoscaler 配置:
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: podinfo-total
namespace: test
annotations:
metric-config.external.prometheus-query.prometheus/processed-requests-per-second: |
sum(rate(istio_requests_total{destination_workload_namespace="test",reporter="destination"}[1m]))
spec:
maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
metrics:
- type: External
external:
metric:
name: prometheus-query
selector:
matchLabels:
query-name: processed-requests-per-second
target:
type: AverageValue
averageValue: "10"
执行如下命令部署这个 HPA 配置:
kubectl --kubeconfig "$USER_CONFIG" apply -f resources_hpa/requests_total_hpa.yaml
执行如下命令校验:
kubectl --kubeconfig "$USER_CONFIG" get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq .
后果如下:
{
"kind": "APIResourceList",
"apiVersion": "v1",
"groupVersion": "external.metrics.k8s.io/v1beta1",
"resources": [
{
"name": "prometheus-query",
"singularName": "","namespaced": true,"kind":"ExternalMetricValueList","verbs": ["get"]
}
]
}
相似地,咱们能够应用其余维度的利用级监控指标配置 HPA。举例如下,不再冗述。
3.2 依据均匀提早扩缩容
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: podinfo-latency-avg
namespace: test
annotations:
metric-config.external.prometheus-query.prometheus/latency-average: |
sum(rate(istio_request_duration_milliseconds_sum{destination_workload_namespace="test",reporter="destination"}[1m]))
/sum(rate(istio_request_duration_milliseconds_count{destination_workload_namespace="test",reporter="destination"}[1m]))
spec:
maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
metrics:
- type: External
external:
metric:
name: prometheus-query
selector:
matchLabels:
query-name: latency-average
target:
type: AverageValue
averageValue: "0.005"
3.3 依据 P95 散布扩缩容
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: podinfo-p95
namespace: test
annotations:
metric-config.external.prometheus-query.prometheus/p95-latency: |
histogram_quantile(0.95,sum(irate(istio_request_duration_milliseconds_bucket{destination_workload_namespace="test",destination_canonical_service="podinfo"}[5m]))by (le))
spec:
maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
metrics:
- type: External
external:
metric:
name: prometheus-query
selector:
matchLabels:
query-name: p95-latency
target:
type: AverageValue
averageValue: "4"
验证 HPA
1 生成负载
执行如下命令产生试验流量,以验证 HPA 配置主动扩容失效。
alias k="kubectl --kubeconfig $USER_CONFIG"
loadtester=$(k -n test get pod -l "app=flagger-loadtester" -o jsonpath='{.items..metadata.name}')
k -n test exec -it ${loadtester} -c loadtester -- hey -z 5m -c 2 -q 10 http://podinfo:9898
这里运行了一个继续 5 分钟、QPS=10、并发数为 2 的申请。
hey 命令具体参考如下:
Usage: hey [options...] <url>
Options:
-n Number of requests to run. Default is 200.
-c Number of workers to run concurrently. Total number of requests cannot
be smaller than the concurrency level. Default is 50.
-q Rate limit, in queries per second (QPS) per worker. Default is no rate limit.
-z Duration of application to send requests. When duration is reached,
application stops and exits. If duration is specified, n is ignored.
Examples: -z 10s -z 3m.
-o Output type. If none provided, a summary is printed.
"csv" is the only supported alternative. Dumps the response
metrics in comma-separated values format.
-m HTTP method, one of GET, POST, PUT, DELETE, HEAD, OPTIONS.
-H Custom HTTP header. You can specify as many as needed by repeating the flag.
For example, -H "Accept: text/html" -H "Content-Type: application/xml" .
-t Timeout for each request in seconds. Default is 20, use 0 for infinite.
-A HTTP Accept header.
-d HTTP request body.
-D HTTP request body from file. For example, /home/user/file.txt or ./file.txt.
-T Content-type, defaults to "text/html".
-a Basic authentication, username:password.
-x HTTP Proxy address as host:port.
-h2 Enable HTTP/2.
-host HTTP Host header.
-disable-compression Disable compression.
-disable-keepalive Disable keep-alive, prevents re-use of TCP
connections between different HTTP requests.
-disable-redirects Disable following of HTTP redirects
-cpus Number of used cpu cores.
(default for current machine is 4 cores)
2 主动扩容
执行如下命令察看扩容状况:
watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-total
后果如下:
Every 2.0s: kubectl --kubeconfig /Users/han/shop_config/ack_zjk -n test get hpa/podinfo East6C16G: Tue Jan 26 18:01:30 2021
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
podinfo Deployment/podinfo 10056m/10 (avg) 1 5 2 4m45s
另外两个 HPA 相似,命令如下:
kubectl --kubeconfig $USER_CONFIG -n test get hpa
watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-latency-avg
watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-p95
3 监控指标
同时,咱们能够实时在 Prometheus 中查看相干的利用级监控指标的实时数据。示意如下:
版权申明:本文内容由阿里云实名注册用户自发奉献,版权归原作者所有,阿里云开发者社区不领有其著作权,亦不承当相应法律责任。具体规定请查看《阿里云开发者社区用户服务协定》和《阿里云开发者社区知识产权爱护指引》。如果您发现本社区中有涉嫌剽窃的内容,填写侵权投诉表单进行举报,一经查实,本社区将立即删除涉嫌侵权内容。