关于typescript:晋级TypeScript高手成为抢手的前端开发人才

37次阅读

共计 4859 个字符,预计需要花费 13 分钟才能阅读完成。

download:升级 TypeScript 高手,成为热门的前端开发人才

{{{http://code.activestate.com/r… (r1)

from operator import itemgetter, attrgetter
import math
import random
import string
import timeit
from timeit import Timer as t
import matplotlib.pyplot as plt
import numpy as np

def sigmoid (x):
return math.tanh(x)

def makeMatrix (I, J, fill=0.0):
m = []
for i in range(I):

m.append([fill]*J)

return m

def randomizeMatrix (matrix, a, b):
for i in range (len (matrix) ):

for j in range (len (matrix[0]) ):
  matrix[i][j] = random.uniform(a,b)

class NN:
def __init__(self, NI, NH, NO):

self.ni = NI
self.nh = NH
self.no = NO
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
self.wi = [[0.0]*self.nh for i in range(self.ni) ]
self.wo = [[0.0]*self.no for j in range(self.nh) ]
randomizeMatrix (self.wi, -0.2, 0.2)
randomizeMatrix (self.wo, -2.0, 2.0)

def runNN (self, inputs):

if len(inputs) != self.ni:
  print 'incorrect number of inputs'
for i in range(self.ni):
  self.ai[i] = inputs[i]
for j in range(self.nh):
  self.ah[j] = sigmoid(sum([ self.ai[i]*self.wi[i][j] for i in range(self.ni) ]))
for k in range(self.no):
  self.ao[k] = sigmoid(sum([ self.ah[j]*self.wo[j][k] for j in range(self.nh) ]))
return self.ao

def weights(self):

print 'Input weights:'
for i in range(self.ni):
  print self.wi[i]
print
print 'Output weights:'
for j in range(self.nh):
  print self.wo[j]
print ''

def test(self, patterns):

results, targets = [], []
for p in patterns:
  inputs = p[0]
  rounded = [round(i) for i in self.runNN(inputs) ]
  if rounded == p[1]: result = '+++++'
  else: result = '-----'
  print '%s %s %s %s %s %s %s' %('Inputs:', p[0], '-->', str(self.runNN(inputs)).rjust(65), 'Target', p[1], result)
  results+= self.runNN(inputs)
  targets += p[1]
return results, targets

def sumErrors (self):

error = 0.0
for p in pat:
  inputs = p[0]
  targets = p[1]
  self.runNN(inputs)
  error += self.calcError(targets)
inverr = 1.0/error
return inverr

def calcError (self, targets):

error = 0.0
for k in range(len(targets)):
  error += 0.5 * (targets[k]-self.ao[k])**2
return error

def assignWeights (self, weights, I):

io = 0
for i in range(self.ni):
  for j in range(self.nh):
    self.wi[i][j] = weights[I][io][i][j]
io = 1
for j in range(self.nh):
  for k in range(self.no):
    self.wo[j][k] = weights[I][io][j][k]

def testWeights (self, weights, I):

same = []
io = 0
for i in range(self.ni):
  for j in range(self.nh):
    if self.wi[i][j] != weights[I][io][i][j]:
      same.append(('I',i,j, round(self.wi[i][j],2),round(weights[I][io][i][j],2),round(self.wi[i][j] - weights[I][io][i][j],2)))

io = 1
for j in range(self.nh):
  for k in range(self.no):
    if self.wo[j][k] !=  weights[I][io][j][k]:
      same.append((('O',j,k), round(self.wo[j][k],2),round(weights[I][io][j][k],2),round(self.wo[j][k] - weights[I][io][j][k],2)))
if same != []:
  print same

def roulette (fitnessScores):
cumalativeFitness = 0.0
r = random.random()
for i in range(len(fitnessScores)):

cumalativeFitness += fitnessScores[i]
if cumalativeFitness > r:
  return i
    

def calcFit (numbers): # each fitness is a fraction of the total error
total, fitnesses = sum(numbers), []
for i in range(len(numbers)):

fitnesses.append(numbers[i]/total)

return fitnesses

takes a population of NN objects

def pairPop (pop):
weights, errors = [], []
for i in range(len(pop)): # for each individual

weights.append([pop[i].wi,pop[i].wo])   # append input & output weights of individual to list of all pop weights
errors.append(pop[i].sumErrors())       # append 1/sum(MSEs) of individual to list of pop errors

fitnesses = calcFit(errors) # fitnesses are a fraction of the total error
for i in range(int(pop_size*0.15)):

print str(i).zfill(2), '1/sum(MSEs)', str(errors[i]).rjust(15), str(int(errors[i]*graphical_error_scale)*'-').rjust(20), 'fitness'.rjust(12), str(fitnesses[i]).rjust(17), str(int(fitnesses[i]*1000)*'-').rjust(20)

del pop
return zip(weights, errors,fitnesses) # weights become item[0] and fitnesses[1] in this way fitness is paired with its weight in a tuple

def rankPop (newpopW,pop):
errors, copy = [], [] # a fresh pop of NN’s are assigned to a list of len pop_size
#pop = [NN(ni,nh,no)]*pop_size # this does not work as they are all copies of eachother
pop = [NN(ni,nh,no) for i in range(pop_size) ]
for i in range(pop_size): copy.append(newpopW[i])
for i in range(pop_size):

pop[i].assignWeights(newpopW, i)                                    # each individual is assigned the weights generated from previous iteration
pop[i].testWeights(newpopW, i)

for i in range(pop_size):

pop[i].testWeights(newpopW, i)

pairedPop = pairPop(pop) # the fitness of these weights is calculated and tupled with the weights
rankedPop = sorted(pairedPop, key = itemgetter(-1), reverse = True) # weights are sorted in descending order of fitness (fittest first)
errors = [eval(repr(x[1])) for x in rankedPop ]
return rankedPop, eval(repr(rankedPop0)), float(sum(errors))/float(len(errors))

def iteratePop (rankedPop):
rankedWeights = [item[0] for item in rankedPop]
fitnessScores = [item[-1] for item in rankedPop]
newpopW = [eval(repr(x)) for x in rankedWeights[:int(pop_size*0.15)] ]
while len(newpopW) <= pop_size: # Breed two randomly selected but different chromos until pop_size reached

ch1, ch2 = [], []
index1 = roulette(fitnessScores)                                   
index2 = roulette(fitnessScores)
while index1 == index2:                                             # ensures different chromos are used for breeeding
  index2 = roulette(fitnessScores)
#index1, index2 = 3,4
ch1.extend(eval(repr(rankedWeights[index1])))
ch2.extend(eval(repr(rankedWeights[index2])))
if random.random() < crossover_rate:
  ch1, ch2 = crossover(ch1, ch2)
mutate(ch1)
mutate(ch2)
newpopW.append(ch1)
newpopW.append(ch2)

return newpopW

正文完
 0