关于算法-数据结构:PAT甲级2019年冬季考试-74-Cartesian-Tree

68次阅读

共计 2501 个字符,预计需要花费 7 分钟才能阅读完成。

7-4 Cartesian Tree (30 分)

A Cartesian tree is a binary tree constructed from a sequence of distinct numbers. The tree is heap-ordered, and an inorder traversal returns the original sequence. For example, given the sequence {8, 15, 3, 4, 1, 5, 12, 10, 18, 6}, the min-heap Cartesian tree is shown by the figure.

Your job is to output the level-order traversal sequence of the min-heap Cartesian tree.

Input Specification:

Each input file contains one test case. Each case starts from giving a positive integer N (≤30), and then N distinct numbers in the next line, separated by a space. All the numbers are in the range of int.

Output Specification:

For each test case, print in a line the level-order traversal sequence of the min-heap Cartesian tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the beginning or the end of the line.

Sample Input:

10
8 15 3 4 1 5 12 10 18 6`

Sample Output:

1 3 5 8 4 6 15 10 12 18

题目限度:

题目粗心:

现给定一颗笛卡尔树的中序序列,它满足小根堆的性质,当初须要输入其层序遍历。

算法思路:

大抵思路就是建树和层序遍历,其惟一的难点在于建树,其实只有晓得了根节点的地位就不是问题,首先咱们当初有这颗树的中序序列,保留在 origin 数组中,同时应用 unordered_map<int,int> pos 保留每一个节点在中序序列中的地位,建树的要害是得只有每一个子树的根节点和在中序遍历中的地位,这里的子树都满足小根堆的性质,阐明在[inL,inR] 之间最小的数字就是以后子树的根节点,那么咱们应用 getMin 取得 original 中的 [left,right] 最小的那个数字,代码如下:

// 在 original 的 [left,right] 中找到最小的那个数字
int getMin(int left,int right){
    int Min = 0x3fffffff;
    for(int i=left;i<=right;++i){Min = Min>original[i]?original[i]:Min;
    }
    return Min;
}

接下来就能够应用 createTree 函数来进行建树了,代码如下:

Node* createTree(int inL,int inR){if(inL>inR) return nullptr;
    Node* root = new Node;
    root->data = getMin(inL,inR);
    int k = pos[root->data];// 根节点的地位 
    //[inL,k-1]为左子树
    root->left = createTree(inL,k-1);
    //[k+1,inR]为右子树
    root->right = createTree(k+1,inR);
    return root;
}

最初就是层序遍历并输入。

留神点:

  • 1、结点数值有点偏大,应用数组保留结点的地位会导致段谬误,应用 map 比拟好

提交后果:

AC 代码:

#include<cstdio>
#include<queue>
#include<unordered_map>

using namespace std;

struct Node{
    int data;
    Node *left;
    Node *right;
};

int original[40];
unordered_map<int,int> pos;// 每一个节点在中序序列中的地位

// 在 original 的 [left,right] 中找到最小的那个数字
int getMin(int left,int right){
    int Min = 0x3fffffff;
    for(int i=left;i<=right;++i){Min = Min>original[i]?original[i]:Min;
    }
    return Min;
}

Node* createTree(int inL,int inR){if(inL>inR) return nullptr;
    Node* root = new Node;
    root->data = getMin(inL,inR);
    int k = pos[root->data];// 根节点的地位 
    //[inL,k-1]为左子树
    root->left = createTree(inL,k-1);
    //[k+1,inR]为右子树
    root->right = createTree(k+1,inR);
    return root;
}

int num = 0;
void BFS(Node* root){
    queue<Node*> q;
    q.push(root);
    while (!q.empty()){Node* t = q.front();
        q.pop();
        if(num==0){printf("%d",t->data);
            ++num;
        } else {printf("%d",t->data);
        }
        if(t->left){q.push(t->left);
        }
        if(t->right){q.push(t->right);
        }
    }
}

int main(){
    int N;
    scanf("%d",&N);
    for (int i = 0; i < N; ++i) {scanf("%d",&original[i]);
        pos[original[i]] = i;
    }
    Node* root = createTree(0,N-1);
    BFS(root);
    return 0;
}

正文完
 0