乐趣区

关于算法-数据结构:PAT甲级2019年冬季考试-73-Summit

7-3 Summit (25 分)

A summit (峰会) is a meeting of heads of state or government. Arranging the rest areas for the summit is not a simple job. The ideal arrangement of one area is to invite those heads so that everyone is a direct friend of everyone.

Now given a set of tentative arrangements, your job is to tell the organizers whether or not each area is all set.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 200), the number of heads in the summit, and M, the number of friendship relations. Then M lines follow, each gives a pair of indices of the heads who are friends to each other. The heads are indexed from 1 to N.

Then there is another positive integer K (≤ 100), and K lines of tentative arrangement of rest areas follow, each first gives a positive number L (≤ N), then followed by a sequence of L distinct indices of the heads. All the numbers in a line are separated by a space.

Output Specification:

For each of the K areas, print in a line your advice in the following format:

  • if in this area everyone is a direct friend of everyone, and no friend is missing (that is, no one else is a direct friend of everyone in this area), print Area X is OK..
  • if in this area everyone is a direct friend of everyone, yet there are some other heads who may also be invited without breaking the ideal arrangement, print Area X may invite more people, such as H. where H is the smallest index of the head who may be invited.
  • if in this area the arrangement is not an ideal one, then print Area X needs help. so the host can provide some special service to help the heads get to know each other.

Here X is the index of an area, starting from 1 to K.

Sample Input:

8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
2 4 6
3 3 2 1

Sample Output:

Area 1 is OK.
Area 2 is OK.
Area 3 is OK.
Area 4 is OK.
Area 5 may invite more people, such as 3.
Area 6 needs help.

题目限度:

题目粗心:

现给定一个 N 个顶点,M 条边的无向图,给出 K 个查问,每一个查问是一个顶点汇合,须要判断以后顶点联合是否是一个齐全子图,如果不是,输入 Area X needs help. 其中 X 为查问的编号,从 1 开始,否则判断是否存在一个顶点与该汇合中的所有顶点都边相连,如果有,输入 Area X may invite more people, such as H. 其中 H 为那个顶点。如果没有,输入 Area X is OK

算法思路:

应用邻接矩阵 G 判断任意两点是否连通,arrange 存储每次查问的顶点汇合,isExist 标记查问的顶点汇合,每一次查问的时候,首先应用 isAllConnected 判断 arrange 中的每一个点是否都有边相连,如果是返回 true,否则返回 false,printf(“Area %d needs help.\n”,i);, 代码如下:

bool isAllConnected(){for(int i:arrange){for(int j:arrange){if(i!=j&&G[i][j]==0){return false;}
        }
    }
    return true;
}

而后再应用 getMorePeople 判断以后的顶点汇合是否能够再增加其他人退出,如果能够返回顶点编号,否则返回 -1,如果返回 -1,printf("Area %d is OK.\n",i); 否则 printf("Area %d may invite more people, such as %d.\n",i,a); (a 为返回值), 代码如下:

int getMorePeople(){for (int i = 1; i <= N; ++i) {
        // 判断以后人 i 是否能够增加到汇合 arrange 中
        bool possible = true;
        // i 在汇合 arrange 中了
        if(isExist[i]) continue;
        for(int j:arrange){if(G[i][j]==0){possible = false;}
        }
        if(possible){
            // i 退出汇合 arrange 中后与所有人都连通
            return i;
        }
    }
    return -1;
}

提交后果:

AC 代码:

#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<vector>

using namespace std;

int G[205][205];
vector<int> arrange;
int N,M;
bool isExist[205];

bool isAllConnected(){for(int i:arrange){for(int j:arrange){if(i!=j&&G[i][j]==0){return false;}
        }
    }
    return true;
}

int getMorePeople(){for (int i = 1; i <= N; ++i) {
        // 判断以后人 i 是否能够增加到汇合 arrange 中
        bool possible = true;
        // i 在汇合 arrange 中了
        if(isExist[i]) continue;
        for(int j:arrange){if(G[i][j]==0){possible = false;}
        }
        if(possible){
            // i 退出汇合 arrange 中后与所有人都连通
            return i;
        }
    }
    return -1;
}

int main(){scanf("%d %d",&N,&M);
    for (int i = 0; i < M; ++i) {
        int a,b;
        scanf("%d %d",&a,&b);
        G[a][b] = G[b][a] = 1;
    }
    int K;
    scanf("%d",&K);
    for(int i=1;i<=K;++i){
        int num;
        scanf("%d",&num);
        arrange.clear();
        memset(isExist,0, sizeof(isExist));
        for (int j = 0; j < num; ++j) {
            int a;
            scanf("%d",&a);
            arrange.push_back(a);
            isExist[a] = true;
        }
        // 判断是否齐全连通
        if(!isAllConnected()){
            // 不是齐全连通
            printf("Area %d needs help.\n",i);
        } else {int a = getMorePeople();
            if(a==-1){printf("Area %d is OK.\n",i);
            } else {printf("Area %d may invite more people, such as %d.\n",i,a);
            }
        }
    }
    return 0;
}
退出移动版