共计 7783 个字符,预计需要花费 20 分钟才能阅读完成。
7-4 Structure of a Binary Tree (30 分)
Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, a binary tree can be uniquely determined.
Now given a sequence of statements about the structure of the resulting tree, you are supposed to tell if they are correct or not. A statment is one of the following:
- A is the root
- A and B are siblings
- A is the parent of B
- A is the left child of B
- A is the right child of B
- A and B are on the same level
- It is a full tree
Note:
- Two nodes are on the same level, means that they have the same depth.
- A full binary tree is a tree in which every node other than the leaves has two children.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer $N (≤30)$, the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are no more than $10^3$ and are separated by a space.
Then another positive integer $M (≤30)$ is given, followed by M lines of statements. It is guaranteed that both A
and B
in the statements are in the tree.
Output Specification:
For each statement, print in a line Yes
if it is correct, or No
if not.
Sample Input:
9
16 7 11 32 28 2 23 8 15
16 23 7 32 11 2 28 15 8
7
15 is the root
8 and 2 are siblings
32 is the parent of 11
23 is the left child of 16
28 is the right child of 2
7 and 11 are on the same level
It is a full tree
Sample Output:
Yes
No
Yes
No
Yes
Yes
Yes
题目限度:
题目粗心:
给定一颗二叉树的中序和后序,现有 7 种不同的查问语句,如果该语句形容正确,输入 Yes,否则输入 No。
算法思路:
这里给出 2 种不同的实现形式,一种是先建树,而后应用 BFS 记录该树的信息 (比拟好想到),第二种是在建树的过程中间接记录所须要的所有信息。
首先给出 7 种查问,该如何判断是否正确的办法:
- A is the root(直接判断后序序列最初一个节点是否和 A 相等即可)
- A and B are siblings(应用 parent 数组记录所有的节点的父亲,只有判断 parent[A]是否和 parent[B]相等即可)
- A is the parent of B(判断 parent[B]是否和 A 相等即可)
- A is the left child of B(应用 leftChild 数组记录所有节点恶左孩子,判断 leftChild[B]与 A 是否相等即可)
- A is the right child of B(应用 rightChild 数组记录所有节点恶左孩子,判断 rightChild[B]与 A 是否相等即可)
- A and B are on the same level(应用 level 数组记录所有节点的档次,而后判断 level[A]和 level[B]是否相等即可)
- It is a full tree(应用 isFullTree 记录该树是否存在只有一个孩子的状况,如果是阐明不是 full tree,否则就是)
先建树,而后应用 BFS 获取信息:
Node* createTree(int postL,int postR,int inL,int inR){if(postL>postR) return nullptr;
Node *root = new Node;
root->data = post[postR];
int k = pos[post[postR]];// 根节点地位
int numOfLeft = k-inL;
root->left = createTree(postL,postL+numOfLeft-1,inL,k-1);
root->right = createTree(postL+numOfLeft,postR-1,k+1,inR);
return root;
}
void BFS(Node *root,bool &isFullTree){
queue<Node*> q;
root->level = 1;
parent[root->data] = -1;
level[root->data] = 1;
q.push(root);
while (!q.empty()){Node *t = q.front();
q.pop();
if((t->left||t->right)&&!(t->left&&t->right)){isFullTree = false;}
if(t->left!= nullptr){
t->left->level = t->level+1;
parent[t->left->data] = t->data;
level[t->left->data] = t->level+1;
leftChild[t->data] = t->left->data;
q.push(t->left);
}
if(t->right!= nullptr){
t->right->level = t->level+1;
level[t->right->data] = t->level+1;
parent[t->right->data] = t->data;
rightChild[t->data] = t->right->data;
q.push(t->right);
}
}
}
在建树的时候获取信息:
bool isFullTree = true;
Node* createTree(int postL,int postR,int inL,int inR,int depth,int pa){if(postL>postR) return nullptr;
Node *root = new Node;
root->data = post[postR];
parent[root->data] = pa;
level[root->data] = depth;
int k = pos[post[postR]];// 根节点地位
int numOfLeft = k-inL;
root->left = createTree(postL,postL+numOfLeft-1,inL,k-1,depth+1,root->data);
root->right = createTree(postL+numOfLeft,postR-1,k+1,inR,depth+1,root->data);
leftChild[root->data] = root->left?post[postL+numOfLeft-1]:-1;
rightChild[root->data] = root->right?post[postR-1]:-1;
if((root->left||root->right)&&!(root->left&&root->right)){isFullTree = false;}
return root;
}
将输出的字符串依据空格划分为字符串数组:
string query;
getline(cin,query);
vector<string> all;
string r;
for(char i : query){if(i==' '){all.push_back(r);
r = "";
} else{r += i;}
}
all.push_back(r);
留神点:
- 1、在判断类型的时候,最好是先判断长度,再判断关键字,不然测试点 1 和测试点 4 会呈现运行时谬误。尤其是在判断 A and B are on the same level 类型的时候。
- 2、在应用 getline 第一次输出的时候须要先应用 getchar()接管回车。
提交后果:
AC 代码 1(一遍建树一遍获取信息):
#include<cstdio>
#include <string>
#include <vector>
#include <iostream>
using namespace std;
/*
* 题目粗心:*
*/
struct Node{
int data;
Node* left;
Node* right;
};
int N;
int in[40],post[40],pos[1005],parent[1005],leftChild[1005],rightChild[1005],level[1005];
bool isFullTree = true;
Node* createTree(int postL,int postR,int inL,int inR,int depth,int pa){if(postL>postR) return nullptr;
Node *root = new Node;
root->data = post[postR];
parent[root->data] = pa;
level[root->data] = depth;
int k = pos[post[postR]];// 根节点地位
int numOfLeft = k-inL;
root->left = createTree(postL,postL+numOfLeft-1,inL,k-1,depth+1,root->data);
root->right = createTree(postL+numOfLeft,postR-1,k+1,inR,depth+1,root->data);
leftChild[root->data] = root->left?post[postL+numOfLeft-1]:-1;
rightChild[root->data] = root->right?post[postR-1]:-1;
if((root->left||root->right)&&!(root->left&&root->right)){isFullTree = false;}
return root;
}
int main(){scanf("%d",&N);
for (int i = 0; i < N; ++i) {scanf("%d",&post[i]);
}
for (int i = 0; i < N; ++i) {scanf("%d",&in[i]);
pos[in[i]] = i;
}
Node *root = createTree(0,N-1,0,N-1,1,-1);
int M;
scanf("%d",&M);
getchar();
for (int j = 0; j < M; ++j) {
string query;
getline(cin,query);
vector<string> all;
string r;
for(char i : query){if(i==' '){all.push_back(r);
r = "";
} else{r += i;}
}
all.push_back(r);
if(all[3]=="root"){if(root->data==stoi(all[0])){printf("Yes\n");
} else {printf("No\n");
}
} else if(all[4]=="siblings"){int a = stoi(all[0]);
int b = stoi(all[2]);
if(parent[a]==parent[b]){printf("Yes\n");
} else {printf("No\n");
}
} else if(all[3]=="parent"){int a = stoi(all[0]);
int b = stoi(all[5]);
if(a==parent[b]){printf("Yes\n");
} else {printf("No\n");
}
} else if(all[3]=="left"){int a = stoi(all[0]);
int b = stoi(all[6]);
if(a==leftChild[b]){printf("Yes\n");
} else {printf("No\n");
}
}else if(all[3]=="right"){int a = stoi(all[0]);
int b = stoi(all[6]);
if(a==rightChild[b]){printf("Yes\n");
} else {printf("No\n");
}
} else if(all.size()==8){int a = stoi(all[0]);
int b = stoi(all[2]);
if(level[a]==level[b]){printf("Yes\n");
} else {printf("No\n");
}
} else{if(isFullTree){printf("Yes\n");
} else {printf("No\n");
}
}
}
return 0;
}
AC 代码 2(先建树后 BFS):
#include<cstdio>
#include <string>
#include <cmath>
#include <set>
#include <vector>
#include <queue>
#include <iostream>
using namespace std;
struct Node{
int data;
Node* left;
Node* right;
int level;
};
int N;
int in[40],post[40],pos[1005],parent[1005],leftChild[1005],rightChild[1005],level[1005];
Node* createTree(int postL,int postR,int inL,int inR){if(postL>postR) return nullptr;
Node *root = new Node;
root->data = post[postR];
int k = pos[post[postR]];// 根节点地位
int numOfLeft = k-inL;
root->left = createTree(postL,postL+numOfLeft-1,inL,k-1);
root->right = createTree(postL+numOfLeft,postR-1,k+1,inR);
return root;
}
void BFS(Node *root,bool &isFullTree){
queue<Node*> q;
root->level = 1;
parent[root->data] = -1;
level[root->data] = 1;
q.push(root);
while (!q.empty()){Node *t = q.front();
q.pop();
if((t->left||t->right)&&!(t->left&&t->right)){isFullTree = false;}
if(t->left!= nullptr){
t->left->level = t->level+1;
parent[t->left->data] = t->data;
level[t->left->data] = t->level+1;
leftChild[t->data] = t->left->data;
q.push(t->left);
}
if(t->right!= nullptr){
t->right->level = t->level+1;
level[t->right->data] = t->level+1;
parent[t->right->data] = t->data;
rightChild[t->data] = t->right->data;
q.push(t->right);
}
}
}
int main(){scanf("%d",&N);
for (int i = 0; i < N; ++i) {scanf("%d",&post[i]);
}
for (int i = 0; i < N; ++i) {scanf("%d",&in[i]);
pos[in[i]] = i;
}
Node *root = createTree(0,N-1,0,N-1);
bool isFullTree = true;
BFS(root,isFullTree);
int M;
scanf("%d",&M);
for (int j = 0; j < M; ++j) {
string query;
if(j==0){
// 要排汇第一个回车
getchar();}
getline(cin,query);
vector<string> all;
string r;
for(char i : query){if(i==' '){all.push_back(r);
r = "";
} else{r += i;}
}
all.push_back(r);
if(all[3]=="root"){if(root->data==stoi(all[0])){printf("Yes\n");
} else {printf("No\n");
}
} else if(all[4]=="siblings"){int a = stoi(all[0]);
int b = stoi(all[2]);
if(parent[a]==parent[b]){printf("Yes\n");
} else {printf("No\n");
}
} else if(all[3]=="parent"){int a = stoi(all[0]);
int b = stoi(all[5]);
if(a==parent[b]){printf("Yes\n");
} else {printf("No\n");
}
} else if(all[3]=="left"){int a = stoi(all[0]);
int b = stoi(all[6]);
if(a==leftChild[b]){printf("Yes\n");
} else {printf("No\n");
}
}else if(all[3]=="right"){int a = stoi(all[0]);
int b = stoi(all[6]);
if(a==rightChild[b]){printf("Yes\n");
} else {printf("No\n");
}
} else if(all.size()==8){int a = stoi(all[0]);
int b = stoi(all[2]);
if(level[a]==level[b]){printf("Yes\n");
} else {printf("No\n");
}
} else{if(isFullTree){printf("Yes\n");
} else {printf("No\n");
}
}
}
return 0;
}