关于算法:R语言建立和可视化混合效应模型mixed-effect-model

61次阅读

共计 2651 个字符,预计需要花费 7 分钟才能阅读完成。

原文链接:http://tecdat.cn/?p=20631 

咱们曾经学习了如何解决混合效应模型。本文的重点是如何建设和_可视化_ 混合效应模型的后果。

设置

本文应用数据集,用于摸索草食动物种群对珊瑚笼罩的影响。

knitr::opts_chunk$set(echo = TRUE)

library(tidyverse) # 数据处理
library(lme4) #  lmer   glmer 模型



me_data <- read_csv("mixede.csv")

创立一个根本的混合效应模型:

该模型以珊瑚覆盖层为因变量(elkhorn_LAI),草食动物种群和深度为固定效应(c。urchinden,c.fishmass,c.maxD)和考察地点作为随机效应(地点)。

留神:因为食草动物种群的测量规模存在差别,因而咱们应用标准化的值,否则模型将无奈收敛。咱们还应用了因变量的对数。我正在依据这项特定钻研对数据进行分组。

summary(mod)

## Linear mixed model fit by maximum likelihood  ['lmerMod']

## 
##      AIC      BIC   logLik deviance df.resid 
##    116.3    125.1    -52.1    104.3       26 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7501 -0.6725 -0.1219  0.6223  1.7882 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  site     (Intercept) 0.000    0.000   
##  Residual             1.522    1.234   
## Number of obs: 32, groups:  site, 9
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  10.1272     0.2670  37.929
## c.urchinden   0.5414     0.2303   2.351
## c.fishmass    0.4624     0.4090   1.130
## c.maxD        0.3989     0.4286   0.931
## 
## Correlation of Fixed Effects:
##             (Intr) c.rchn c.fshm
## c.urchinden  0.036              
## c.fishmass  -0.193  0.020       
## c.maxD       0.511  0.491 -0.431
## convergence code: 0
## boundary (singular) fit: see ?isSingular

绘制效应大小图:

如果您有很多固定效应,这很有用。

plot(mod)

效应大小的格式化图:

让咱们更改轴标签和题目。

# 留神:轴标签应按从下到上的顺序排列。# 要查看效应大小和 p 值,设置 show.values 和 show.p= TRUE。只有当效应大小的值过大时,才会显示 P 值。title="草食动物对珊瑚笼罩的影响")

模型后果表输入:

创立模型摘要输出表。这将提供预测变量,包含其估计值,置信区间,估计值的 p 值以及随机效应信息。

 tab(mod)

格式化表格

# 注:预测标签(pred.labs)应从上到下排列;dv.labs 位于表格顶部的因变量的名称。pred.labels =c("(Intercept)", "Urchins", "Fish", "Depth"), 

 

用数据绘制模型预计

咱们能够在理论数据上绘制模型估计值!咱们一次只针对一个变量执行此操作。留神:数据已标准化以便在模型中应用,因而咱们绘制的是标准化数据值,而不是原始数据

步骤 1:将效应大小估算值保留到 data.frame 中

# 应用函数。term= 固定效应,mod= 你的模型。effect(term= "c.urchinden", mod= mod)
summary(effects) #值的输入

## 
##  c.urchinden effect
## c.urchinden
##     -0.7      0.4        2        3        4 
##  9.53159 10.12715 10.99342 11.53484 12.07626 
## 
##  Lower 95 Percent Confidence Limits
## c.urchinden
##      -0.7       0.4         2         3         4 
##  8.857169  9.680160 10.104459 10.216537 10.306881 
## 
##  Upper 95 Percent Confidence Limits
## c.urchinden
##     -0.7      0.4        2        3        4 
## 10.20601 10.57414 11.88238 12.85314 13.84563

# 将效应值另存为 df:x  <- as.data.frame(effects)

步骤 2:应用效应值 df 绘制估算值

如果要保留根本图(仅固定效应和因变量数据),能够将其合成为独自的步骤。留神:对于该图,我正在基于此特定钻研对数据进行分组。

#根本步骤:#1 创立空图

  #2 从数据中增加 geom_points()#3 为模型预计增加 geom_point。咱们扭转色彩,使它们与数据辨别开来

  #4 为 MODEL 的估计值增加 geom_line。扭转色彩以配合预计点。#5 增加具备模型预计置信区间的 geom_ribbon

  #6 依据须要编辑标签!#1
chin_plot <- ggplot() + 
  #2
geom_point(data ,  + 
  #3
  geom_point(data=x_, aes(x= chinde, y=fit), color="blue") +
  #4
  geom_line(data=x, aes(x= chinde, y=fit), color="blue") +
  #5
  geom_ribbon(data= x , aes(x=c.urchinden, ymin=lower, ymax=upper), alpha= 0.3, fill="blue") +
  #6
  labs(x="海胆(标准化)", y="珊瑚覆盖层")

chin_plot


最受欢迎的见解

1. 基于 R 语言的 lmer 混合线性回归模型

2.R 语言用 Rshiny 摸索 lme4 狭义线性混合模型(GLMM)和线性混合模型(LMM)

3.R 语言线性混合效应模型实战案例

4.R 语言线性混合效应模型实战案例 2

5.R 语言线性混合效应模型实战案例

6. 线性混合效应模型 Linear Mixed-Effects Models 的局部折叠 Gibbs 采样

7.R 语言 LME4 混合效应模型钻研老师的受欢迎水平

8.R 语言中基于混合数据抽样 (MIDAS) 回归的 HAR-RV 模型预测 GDP 增长

9. 应用 SAS,Stata,HLM,R,SPSS 和 Mplus 的分层线性模型 HLM

正文完
 0