⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 常识星球发问。
学习数据结构与算法的关键在于把握问题背地的算法思维框架,你的思考越形象,它能笼罩的问题域就越广,了解难度也更简单。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起领会上分之旅。
本文是 LeetCode 上分之旅系列的第 41 篇文章,往期回顾请移步到文章开端 \~
周赛 359
T1. 判断首字母缩略词(Easy)
- 标签:模仿、字符串
T2. k-avoiding 数组的最小总和(Medium)
- 标签:散列表、贪婪、数学
T3. 销售利润最大化(Medium)
- 标签:排序、桶排序、双指针、线性 DP、离散化
T4. 找出最长等值子数组(Medium)
- 标签:分桶、双指针
T1. 判断首字母缩略词(Easy)
https://leetcode.cn/problems/check-if-a-string-is-an-acronym-of-words/
题解(模仿)
class Solution {
public:
bool isAcronym(vector<string>& words, string s) {if (words.size() != s.length()) return false;
for (int i = 0; i < words.size(); i++) {if (words[i][0] != s[i]) return false;
}
return true;
}
};
复杂度剖析:
- 工夫复杂度:$O(n)$ 线性遍历;
- 空间复杂度:$O(1)$ 仅应用常量级别空间。
T2. k-avoiding 数组的最小总和(Medium)
https://leetcode.cn/problems/determine-the-minimum-sum-of-a-k-avoiding-array/
题解一(散列表 + 贪婪)
从 1 开始从小到大枚举,如果以后元素 cur 与已选列表不抵触,则退出后果中。为了验证是否抵触,咱们应用散列表在 O(1) 工夫复杂度判断。
class Solution {fun minimumSum(n: Int, k: Int): Int {val set = HashSet<Int>()
var sum = 0
var cur = 1
repeat(n) {while (!set.isEmpty() && set.contains(k - cur)) cur++
sum += cur
set.add(cur)
cur++
}
return sum
}
}
复杂度剖析:
- 工夫复杂度:$O(n)$ 线性遍历;
- 空间复杂度:$O(n)$ 散列表空间。
题解二(数学)
这道题还能够持续开掘数学法则,咱们发现当咱们从 1 开始从小到大枚举时,每抉择一个数的同时必然会使得另一个数 k – x 不可选。例如:
- 抉择 1,则 k – 1 不可选;
- 抉择 2,则 k – 2 不可选;
- …
- 抉择 k / 2,则 k – k / 2 不可选。
能够发现,最终抉择的元素被分为两局部:
- 小于 k 的局部:抉择所有和为 k 的配对中的较小值,即 1、2、3 … k / 2;
- 大于等于 k 的局部:与其余任意正整数相加都不会等于 k,因而大于等于 k 的数必然能够抉择,即 k、k + 1、k + 2、…、k + n – m – 1 共 n – m 个数。
咱们令 m = min(k / 2, n),应用求和公式能够 O(1) 求出两局部的总和:
- 小于 k 的局部:$m(m + 1)/ 2$
- 大于等于 k 的局部:$(n – m) * (2*k + n – m – 1) / 2$
class Solution {fun minimumSum(n: Int, k: Int): Int {val m = Math.min(n, k / 2)
return m * (m + 1) / 2 + (n - m) * (2 * k + n - m - 1) / 2
}
}
复杂度剖析:
- 工夫复杂度:$O(1)$
- 空间复杂度:$O(1)$
T3. 销售利润最大化(Medium)
https://leetcode.cn/problems/maximize-the-profit-as-the-salesman/
问题剖析
对于区间 [0, n) 的房子,如果咱们抉择 [i, j, gold] 的 offer,那么原问题的解就变成 gold + [0, i) + (j, n) 的两个子问题的解;
定义 dp[i] 示意到 [i] 为止能够播种的最大销售利润,则对于第 [i] 间房子有卖和不卖两种抉择:
- 不卖,那么 dp[i] = dp[i – 1]
- 卖,那么 dp[i] = dp[i – 1] + gold。然而题目的销售 offer 是依照区间销售而不是依照单个房子销售,如果第 i 个房子没有处于 offer 的 end 端点的话,咱们是不能卖出的。
因而,咱们须要找到枚举 start 端点(从后往前遍历)或枚举 end 端点(从前往后遍历)的办法,并应用转移方程 dp[i] = max(dp[i], dp[start] + gold) 更新答案。
题解一(排序 + 线性 DP + 双指针)
第一种办法,咱们先对所有 offer 依照 end 端点排序,并应用 j 指针指向以后终止工夫最早的 offer。在动静布局的过程中,当 i 指针与 j 指针的 end 端点重合时,能够尝试更新后果。
class Solution {fun maximizeTheProfit(n: Int, offers: List<List<Int>>): Int {
val m = offers.size
// 排序
Collections.sort(offers) { e1, e2 ->
e1[1] - e2[1]
}
var j = 0
// 线性 DP
val dp = IntArray(n + 1)
for (i in 1 .. n) {
// 不卖
dp[i] = dp[i - 1]
// 卖
while (j < m && i - 1 == offers[j][1]) { // while:可能存在起点重叠的区间
dp[i] = Math.max(dp[i], dp[offers[j][0]] + offers[j][2])
++j
}
}
return dp[n]
}
}
复杂度剖析:
- 工夫复杂度:$O(mlgm + n + m)$ 排序预处理工夫为 $O(mlgm)$,动静布局工夫为 $O(n + m)$;
- 空间复杂度:$O(n)$ 排序递归栈空间 + DP 数组空间。
题解二(桶排序 + 线性 DP)
第二种办法,同样是对所有 offer 依照 end 端点排序,但咱们应用桶排序优化。
class Solution {fun maximizeTheProfit(n: Int, offers: List<List<Int>>): Int {
// 分桶
val buckets = Array(n) {LinkedList<IntArray>() }
for (offer in offers) {buckets[offer[1]].add(intArrayOf(offer[0], offer[2]))
}
// 线性 DP
val dp = IntArray(n + 1)
for (i in 1 .. n) {
// 不卖
dp[i] = dp[i - 1]
// 卖
for (e in buckets[i - 1]) {dp[i] = Math.max(dp[i], dp[e[0]] + e[1])
}
}
return dp[n]
}
}
复杂度剖析:
- 工夫复杂度:$O(n + m)$ 预处理工夫为 $O(n + m)$,其中蕴含 $O(n)$ 工夫的数组创立工夫,应用散列表能够优化预处理工夫到 $O(m)$。动静布局中求最值局部每个 offer 最多拜访 1 次整体工夫,因而动静布局的工夫复杂度为 $O(n + m)$;
- 空间复杂度:$O(n)$ DP 数组和分桶数组空间。
题解三(线性 DP + 离散化)
如果 n 的值域十分大的话,以上两种解法的工夫和空间可能无奈满足。咱们发现因为影响题目的关键点仅在与 offer 的 start 端点和 end 端点,而两头空白的点或者被笼罩的点是无关紧要的。
因而,咱们能够应用离散化的技巧,将所有 offer 的 start 端点和 end 端点去重后组合成新的坐标轴 points,将在 [0, n) 上的线性 DP 转换为在 [0, m) 上的线性 DP。
class Solution {fun maximizeTheProfit(n: Int, offers: List<List<Int>>): Int {
// 对 start 和 end 离散化
val pointSet = HashSet<Int>()
for (offer in offers) {pointSet.add(offer[0])
pointSet.add(offer[1])
}
// 排序
val points = pointSet.toMutableList()
points.sort()
// 端点 -> id
val m = points.size
val ids = HashMap<Int, Int>()
for (id in 0 until m) {ids[points[id]] = id
}
// 分桶
val buckets = Array(m) {LinkedList<IntArray>() }
for (offer in offers) {val start = offer[0]
val end = offer[1]
val gold = offer[2]
buckets[ids[end]!!].add(intArrayOf(ids[start]!!, gold))
}
// 线性 DP
val dp = IntArray(m + 1)
for (i in 1 .. m) {
// 不卖
dp[i] = dp[i - 1]
// 卖
for (e in buckets[i - 1]) {dp[i] = Math.max(dp[i], dp[e[0]] + e[1])
}
}
return dp[m]
}
}
复杂度剖析:
- 工夫复杂度:$O(mlgm + m)$ 预处理工夫为 $O(mlgm)$,瓶颈在排序,线性 DP 工夫为 $O(m)$;
- 空间复杂度:$O(m)$ 离散化节点空间、分桶空间和线性 DP 空间都是 $O(m)$ 工夫复杂度。
类似题目:
- 1235. 布局兼职工作
- 1751. 最多能够加入的会议数目 II
- 2008. 出租车的最大盈利
- 2054. 两个最好的不重叠流动
T4. 找出最长等值子数组(Medium)
https://leetcode.cn/problems/find-the-longest-equal-subarray/
题解(分桶 + 同向双指针)
这道题比 T3 还略微简略一些。
- 分桶: 咱们晓得指标子数组肯定产生在元素值相等的地位,因而咱们能够先把所有元素下标按元素值分桶,再应用滑动窗口来寻找分桶内删除次数不超过 k 能够结构的最大间断子数组。
- 滑动窗口: 应用同向双指针保护指标滑动窗口,当向右扩大窗口右端点时减少删除量 delete,如果 delete 大于 k 则须要放大左端点,过程中记录间断相等子数组的最大长度。
class Solution {fun longestEqualSubarray(nums: List<Int>, k: Int): Int {
val n = nums.size
// 分桶
val buckets = Array(n + 1) {ArrayList<Int>() }
for ((i, num) in nums.withIndex()) {buckets[num].add(i)
}
// 同向双指针
var ret = 1
for (bucket in buckets) {
val m = bucket.size
var delete = 0
var i = 0
for (j in 1 until m) {
// 减少删除量
delete += bucket[j] - bucket[j - 1] - 1
while (delete > k) {
// 复原删除量
delete -= bucket[i + 1] - bucket[i] - 1
// 膨胀左指针
i++
}
ret = Math.max(ret, j - i + 1)
}
}
return ret
}
}
复杂度剖析:
- 工夫复杂度:$O(n)$ 分桶工夫为 $O(n)$,所有分桶的同向双指针工夫总和为 $O(n)$;
- 空间复杂度:$O(n)$ 分桶空间。
举荐浏览
LeetCode 上分之旅系列往期回顾:
- LeetCode 单周赛第 358 场 · 联合核心扩大的枯燥栈贪婪问题
- LeetCode 单周赛第 357 场 · 多源 BFS 与连通性问题
- LeetCode 双周赛第 111 场 · 循序渐进地解决动静布局问题
- LeetCode 双周赛第 110 场 · 联合排序不等式的动静布局
⭐️ 永远置信美妙的事件行将产生,欢送退出小彭的 Android 交换社群 \~