共计 1543 个字符,预计需要花费 4 分钟才能阅读完成。
本文是对 FCOS 的小修小改,最终性能达到了 50.4AP,堪称相当强劲了,大家在工程上能够参考其中的改良以及晋升办法
起源:晓飞的算法工程笔记 公众号
论文: FCOS: A Simple and Strong Anchor-freeObject Detector
- 论文地址:https://arxiv.org/abs/2006.09214
- 论文代码:https://github.com/aim-uofa/AdelaiDet
Introduction
论文由 FCOS 原团队从新批改后发表,作者管这篇为 FCOS 的扩大版本而不是 FCOSv2,但为了好分辨,咱们就管他叫 FCOSv2 吧。FCOSv2 的整体思维根本与 FCOS 统一,但性能杰出很多。比照 FCOS,根底骨干 ResNet-101-FPN 上的性能从 41.5AP 晋升了 43.2AP,而最高版本的性能则是达到了 50.4AP。
本文次要探讨 FCOSv2 其中的一些改良与晋升办法,具体的其它实现可参考之前的 FCOS 文章。
FCOSv2
FCOS
FCOSv2 在思想上与 FCOS 基本一致,在特色图的每个地位预测指标的类别、尺寸信息以及 Center-ness,Center-ness 用来示意以后地位与指标中心点的间隔,指标的最终分数由分类分数和 Center-ness 分数联合所得。尺寸信息跟以往的 bbox 回归办法不同,预测的是特色地位到指标的四个边界的间隔。
图 2 为 FCOSv2 中的骨干网络结构,骨干网络仍然采纳 FPN,每层特色应用独特的 head 预测类别信息、尺寸信息以及 Center-ness,具体的能够看看之前的文章。
Change
上面列举了一些 FCOSv2 绝对于 FCOS 的批改,因为论文没有与原版进行比照,所以不晓得各局部带来的收益具体是多少:
- 正样本点指定的批改,FCOS 要求该特色点位于指标外部,以及该特色点到指标边界的间隔满足所处的 FPN 层的束缚,而 FCOSv2 则要求特色点位于指标的核心区域 $(c_x-rs, c_y-rs, c_x + rs, c_y+rs)$,$s$ 为以后层的 stride,$r=1.5$ 为超参数。
- 回归指标批改,FCOS 的回归指标间接是特色点到指标边界的间隔,因为 Head 是共用的,所以在预测时为每个 level 预设一个可学习的 scale 因子,而 FCOSv2 则退出 stride,变得更适应 FPN 的尺寸,可学习的 scale 因子仍然应用。
- center-ness 预测的地位,FCOS 的 center-ness 预测与分类预测放到了一起,而 FCOSv2 则将其与回归预测放到了一起。
- 回归损失函数批改,FCOS 应用 IoU 损失进行回归的学习,而 FCOSv2 则采纳了 GIoU 损失进行回归的学习。
- 最终分数的计算,FCOS 采纳分类分数以及 center-ness 之积,FCOSv2 则采纳分类分数以及 center-ness 之积的平方根:
Improvement
为了取得更好的性能,除了更换更强的骨干网络外,论文还将 FCOSv2 进行了如下扩大:
- 应用 BiFPN 代替一般 FPN,留神没有采纳深度拆散卷积,这部分能带来约 2AP 晋升。
- 测试阶段的数据加强,将图片顺次缩放至 $[400,1200]$,每次步长为 100,每个尺寸应用原图以及垂直翻转图片进行推理,这部分能带来约 2.5AP 晋升。
- 减少可变形卷积,别离替换骨干网络的第三和第四阶段的卷积,以及 Head 的两个分支的前四个卷积,这部分带来约 1.5AP 晋升。
Experiment
与 SOTA 办法比照。
推理性能比照。
Conclusion
本文是对 FCOS 的小修小改,最终性能达到了 50.4AP,堪称相当强劲了,大家在工程上能够参考其中的改良以及晋升办法。
如果本文对你有帮忙,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】