关于springboot:Kafka成长记3Producer-元数据拉取源码原理上

58次阅读

共计 18552 个字符,预计需要花费 47 分钟才能阅读完成。

上一节咱们剖析了 Producer 的外围组件,咱们失去了一张要害的组件图。你还记得么?

简略概括下下面的图就是:

创立了 Metadata 组件,外部通过 Cluster 保护元数据

初始化了发送音讯的内存缓冲器 RecordAccumulator

创立了 NetworkClient,外部最重要的是创立了 NIO 的 Selector 组件

启动了一个 Sender 线程,Sender 援用了下面的所有组件,开始执行 run 办法。

图的最下方能够看到,上一节截止到了 run 办法的执行,这一节咱们首先会看看 run 办法外围脉络做了什么。接着剖析下 Producer 第一个外围流程:元数据拉取的源码原理。

让咱们开始吧!

Sender 的 run 办法在做什么?

这一节咱们就持续剖析下,sender 的 run 办法开始执行会做什么。

 public void run() {log.debug("Starting Kafka producer I/O thread.");

        // main loop, runs until close is called
        while (running) {
            try {run(time.milliseconds());
            } catch (Exception e) {log.error("Uncaught error in kafka producer I/O thread:", e);
            }
        }

        log.debug("Beginning shutdown of Kafka producer I/O thread, sending remaining records.");

        // okay we stopped accepting requests but there may still be
        // requests in the accumulator or waiting for acknowledgment,
        // wait until these are completed.
        while (!forceClose && (this.accumulator.hasUnsent() || this.client.inFlightRequestCount() > 0)) {
            try {run(time.milliseconds());
            } catch (Exception e) {log.error("Uncaught error in kafka producer I/O thread:", e);
            }
        }
        if (forceClose) {
            // We need to fail all the incomplete batches and wake up the threads waiting on
            // the futures.
            this.accumulator.abortIncompleteBatches();}
        try {this.client.close();
        } catch (Exception e) {log.error("Failed to close network client", e);
        }

        log.debug("Shutdown of Kafka producer I/O thread has completed.");
    }

这个 run 办法的外围脉络很简略。次要就是 2 个 while 循环 + 线程的 close,而 2 个 while 循环,他们都调用了 run(long time)的这个办法。

通过正文你能够看到,第二个 while 是解决非凡状况的,当第一个 while 退出后,还有未发送的申请,须要第二个 while 循环解决实现,才会敞开线程。

整体脉络如下图所示:

接着其实就该看下 run 办法次要在干什么了?

   /**
     * Run a single iteration of sending
     * 
     * @param now
     *            The current POSIX time in milliseconds
     */
    void run(long now) {Cluster cluster = metadata.fetch();
        // get the list of partitions with data ready to send
        RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);

        // if there are any partitions whose leaders are not known yet, force metadata update
        if (result.unknownLeadersExist)
            this.metadata.requestUpdate();

        // remove any nodes we aren't ready to send to
        Iterator<Node> iter = result.readyNodes.iterator();
        long notReadyTimeout = Long.MAX_VALUE;
        while (iter.hasNext()) {Node node = iter.next();
            if (!this.client.ready(node, now)) {iter.remove();
                notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
            }
        }

        // create produce requests
        Map<Integer, List<RecordBatch>> batches = this.accumulator.drain(cluster,
                                                                         result.readyNodes,
                                                                         this.maxRequestSize,
                                                                         now);
        if (guaranteeMessageOrder) {
            // Mute all the partitions drained
            for (List<RecordBatch> batchList : batches.values()) {for (RecordBatch batch : batchList)
                    this.accumulator.mutePartition(batch.topicPartition);
            }
        }

        List<RecordBatch> expiredBatches = this.accumulator.abortExpiredBatches(this.requestTimeout, now);
        // update sensors
        for (RecordBatch expiredBatch : expiredBatches)
            this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);

        sensors.updateProduceRequestMetrics(batches);
        List<ClientRequest> requests = createProduceRequests(batches, now);
        // If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately
        // loop and try sending more data. Otherwise, the timeout is determined by nodes that have partitions with data
        // that isn't yet sendable (e.g. lingering, backing off). Note that this specifically does not include nodes
        // with sendable data that aren't ready to send since they would cause busy looping.
        long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
        if (result.readyNodes.size() > 0) {log.trace("Nodes with data ready to send: {}", result.readyNodes);
            log.trace("Created {} produce requests: {}", requests.size(), requests);
            pollTimeout = 0;
        }
        for (ClientRequest request : requests)
            client.send(request, now);

        // if some partitions are already ready to be sent, the select time would be 0;
        // otherwise if some partition already has some data accumulated but not ready yet,
        // the select time will be the time difference between now and its linger expiry time;
        // otherwise the select time will be the time difference between now and the metadata expiry time;
        this.client.poll(pollTimeout, now);
    }

下面的代码,你如果第一次看,你必定会感觉,这个脉络十分不清晰,不晓得重点在哪里。不过还好有些正文,你能大体猜到他在干嘛。

accumulator 的 ready,networkclient 的 ready、networkclient 的 send、networkclient 的 poll

这些如同是在筹备内存区域、筹备网络连接的 node 节点、发送数据、拉取响应后果的意思。

可是如果你猜不到,该怎么办呢?

这时候就能够 祭出 debug 这个杀器了。因为是 producer,咱们能够在 Hellowolrd 的这个客户端打断点,一步一步看下。

当你对 run 办法一步一步打了断点之后你会发现:

accumulator 的 ready,networkclient 的 ready、networkclient 的 send 这些的逻辑简直都没有执行,全部都是初始化空对象,或者办法外部间接 return。

间接一路执行到了 client.poll 办法。如下图所示:

那么,你能够得出一个论断,while 第一次循环这个 run 办法的外围逻辑,其实只有一句话:

client.poll(pollTimeout, now)

整体脉络如下所示:

看来接下来,这个 NetworkClient 的 poll 办法,就是要害中的要害了:

    /**
     * Do actual reads and writes to sockets.
     * 对套接字进行理论读取和写入
     *
     * @param timeout The maximum amount of time to wait (in ms) for responses if there are none immediately,
     *                must be non-negative. The actual timeout will be the minimum of timeout, request timeout and
     *                metadata timeout
     * @param now The current time in milliseconds
     * @return The list of responses received
     */
    @Override
    public List<ClientResponse> poll(long timeout, long now) {long metadataTimeout = metadataUpdater.maybeUpdate(now);
        try {this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
        } catch (IOException e) {log.error("Unexpected error during I/O", e);
        }

        // process completed actions
        long updatedNow = this.time.milliseconds();
        List<ClientResponse> responses = new ArrayList<>();
        handleCompletedSends(responses, updatedNow);
        handleCompletedReceives(responses, updatedNow);
        handleDisconnections(responses, updatedNow);
        handleConnections();
        handleTimedOutRequests(responses, updatedNow);

        // invoke callbacks
        for (ClientResponse response : responses) {if (response.request().hasCallback()) {
                try {response.request().callback().onComplete(response);
                } catch (Exception e) {log.error("Uncaught error in request completion:", e);
                }
            }
        }

        return responses;
    }

这个办法的脉络就清晰多了, 通过办法名和正文,咱们简直能够猜出他的一些作用次要有:

1)正文说:对套接字进行理论读取和写入

2)metadataUpdater.maybeUpdate(),你还记得 NetworkClient 的组件 DefaultMetadataUpdater 么,办法名意思是可能进行元数据更新。这个如同很要害的样子

3)接着执行了 Selector 的 poll 办法,这个是 NetworkClient 的另一个组件 Selector,还记得么?它底层封装了原生的 NIO Selector。这个办法应该也比拟要害。

4)后续对 response 执行了一系列的办法,从名字上看,handleCompletedSends 解决实现发送的申请、handleCompletedReceives 解决实现承受的申请、handleDisconnections 解决断开连接的申请、handleConnections 解决连贯胜利的申请、解决超时的申请 handleTimedOutRequests。依据不同状况有不同的解决。

5)最初还有一个 response 的相干的回调解决,如果注册了回调函数,会执行下。这个应该不是很要害的逻辑

也就是简略的说就是NetworkClient 执行 poll 办法,次要通过 selector 解决申请的读取和写入,对响应后果做不同的解决而已。

如下图所示:

到这里其实咱们根本摸清出了 run 办法次要在做的一件事件了,因为是第一次循环,之前的 accumulator 的 ready,networkclient 的 ready、networkclient 的 send 什么都没做,第一次 while 循环 run 办法外围执行的是 networkclient.poll 办法。而 poll 办法的次要逻辑就是下面图中所示的了。

maybeUpdate 可能在在拉取元数据?

方才咱们剖析到,poll 办法首先执行的是 DefaultMetadataUpdater 的 maybeUpdate 办法,它是可能更新的意思。咱们来一起看下他的逻辑吧。

        public long maybeUpdate(long now) {
            // should we update our metadata?
            long timeToNextMetadataUpdate = metadata.timeToNextUpdate(now);
            long timeToNextReconnectAttempt = Math.max(this.lastNoNodeAvailableMs + metadata.refreshBackoff() - now, 0);
            long waitForMetadataFetch = this.metadataFetchInProgress ? Integer.MAX_VALUE : 0;
            // if there is no node available to connect, back off refreshing metadata
            long metadataTimeout = Math.max(Math.max(timeToNextMetadataUpdate, timeToNextReconnectAttempt),
                    waitForMetadataFetch);

            if (metadataTimeout == 0) {// Beware that the behavior of this method and the computation of timeouts for poll() are
                // highly dependent on the behavior of leastLoadedNode.
                Node node = leastLoadedNode(now);
                maybeUpdate(now, node);
            }

            return metadataTimeout;
        }   

   /**
     * The next time to update the cluster info is the maximum of the time the current info will expire and the time the
     * current info can be updated (i.e. backoff time has elapsed); If an update has been request then the expiry time
     * is now
     */
    public synchronized long timeToNextUpdate(long nowMs) {long timeToExpire = needUpdate ? 0 : Math.max(this.lastSuccessfulRefreshMs + this.metadataExpireMs - nowMs, 0);
        long timeToAllowUpdate = this.lastRefreshMs + this.refreshBackoffMs - nowMs;
        return Math.max(timeToExpire, timeToAllowUpdate);
    }

原来这里有一个工夫的判断,当判断满足才会执行 maybeUpdate。

这个工夫计算如同比较复杂,然而大体能够看进去,metadataTimeout 是依据三个工夫综合判断进去的,如果是 0 才会执行真正的 maybeUpdate()。

像这种时候,咱们能够间接在 metadataTimeout 这里打一个断点,看下它的值是如何计算的,比方下图:

你会发现,当第一次执行 while 循环,执行到 poll 办法,执行到这个 maybeUpdate 的时候,决定 metadataTimeout 的 3 个值,有两个是 0,其中一个是非 0,是一个 299720 的值。最终导致 metadataTimeout 也是非 0,是 299720。

也就是说,第一次 while 循环不会执行 maybeUpdate 的任何逻辑。

那么接着向下执行 Selector 的 poll()办法。

   /**
     * Do whatever I/O can be done on each connection without blocking. This includes completing connections, completing
     * disconnections, initiating new sends, or making progress on in-progress sends or receives.
     * 在不阻塞的状况下,在每个连贯上做任何能够做的 I/O。这包含实现连贯实现、断开连接,启动新的发送,或在进行中的发送或接管申请
     */
    @Override
    public void poll(long timeout) throws IOException {if (timeout < 0)
            throw new IllegalArgumentException("timeout should be >= 0");

        clear();

        if (hasStagedReceives() || !immediatelyConnectedKeys.isEmpty())
            timeout = 0;

        /* check ready keys */
        long startSelect = time.nanoseconds();
        // 这个办法是 NIO 底层 Selector.select(),会阻塞监听
        int readyKeys = select(timeout);
        long endSelect = time.nanoseconds();
        currentTimeNanos = endSelect;
        this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());

        // 如果监听到有操作的 SelectionKeys, 也就是 readyKeys>0< 会执行一些操作
        if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) {pollSelectionKeys(this.nioSelector.selectedKeys(), false);
            pollSelectionKeys(immediatelyConnectedKeys, true);
        }

        addToCompletedReceives();

        long endIo = time.nanoseconds();
        this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
        maybeCloseOldestConnection();}

    private int select(long ms) throws IOException {if (ms < 0L)
            throw new IllegalArgumentException("timeout should be >= 0");

        if (ms == 0L)
            return this.nioSelector.selectNow();
        else
            return this.nioSelector.select(ms);
    }

下面的脉络次要是 2 步:

1)select(timeout): NIO 底层 selector.select(),会阻塞监听

2)pollSelectionKeys(): 监听到有操作的 SelectionKeys,做了一些操作

也就是说,最终,Sender 线程的 run 办法,第一次 while 循环执行 poll 办法,最初什么都没干,会被 selector.select()阻塞住。

如下图所示:

new KafkaProducer 之后

剖析完了 run 办法的执行,咱们剖析的 KafkaProducerHelloWorld 第一步 new KafkaProducer()根本就实现了。

大家经验了一节半的工夫,终于剖析分明了 KafkaProducer 创立的原理。不不晓得你对 Kafka 的 Producer 是不是有了更深的了解了。

剖析了 new KafkaProducer()之后呢?

咱们持续接着 KafkaProducerHelloWorld 往下剖析,你还记得 KafkaProducerHelloWorld 的代码么?

public class KafkaProducerHelloWorld {public static void main(String[] args) throws Exception {
        // 配置 Kafka 的一些参数
        Properties props = new Properties();
        props.put("bootstrap.servers", "mengfanmao.org:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        // 创立一个 Producer 实例
        KafkaProducer<String, String> producer = new KafkaProducer<>(props);

        // 封装一条音讯
        ProducerRecord<String, String> record = new ProducerRecord<>("test-topic", "test-key", "test-value");

        // 同步形式发送音讯,会阻塞在这里,直到发送实现
        // producer.send(record).get();

        // 异步形式发送音讯,不阻塞,设置一个监听回调函数即可
        producer.send(record, new Callback() {
            @Override
            public void onCompletion(RecordMetadata metadata, Exception exception) {if(exception == null) {System.out.println("音讯发送胜利");
                } else {exception.printStackTrace();
                }
            }
        });

        Thread.sleep(5 * 1000);

        // 退出 producer
        producer.close();}

KafkaProducerHelloWorld 次要就 3 步:

1)new KafkaProducer 这个咱们曾经剖析完了,次要剖析了配置文件的解析、各个组件是什么、有什么,还有就是方才剖析的 run 线程第一次循环到底执行了什么。

2)new ProducerRecord 创立待发送的音讯

3)producer.send() 发送音讯

首先创立待发送的音讯:

ProducerRecord<String, String> record = new ProducerRecord<>("test-topic", "test-key", "test-value");

public ProducerRecord(String topic, K key, V value) {this(topic, null, null, key, value);
}
    /**
     * Creates a record with a specified timestamp to be sent to a specified topic and partition
     * 创立具备指定工夫戳的记录以发送到指定主题和分区
     * @param topic The topic the record will be appended to
     * @param partition The partition to which the record should be sent
     * @param timestamp The timestamp of the record
     * @param key The key that will be included in the record
     * @param value The record contents
     */
    public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value) {if (topic == null)
            throw new IllegalArgumentException("Topic cannot be null");
        if (timestamp != null && timestamp < 0)
            throw new IllegalArgumentException("Invalid timestamp" + timestamp);
        this.topic = topic;
        this.partition = partition;
        this.key = key;
        this.value = value;
        this.timestamp = timestamp;
    }

咱们之前提过,Record 示意了一条音讯的形象封装。这个 ProducerRecord 其实就示意了一条音讯。

从构造函数的正文能够看进去,ProducerRecord 能够指定往哪个 topic,哪一个分区 partition,并且音讯能够设置一个工夫戳。分区和工夫戳默认能够不指定

其实看这块源码,咱们次要失去的信息就是这些了,这些都比较简单。就不画图了。

发送音讯时的元数据拉取触发

当 Producer 和 Record 都创立好了之后,能够用同步或者异步的形式发送音讯。

// 同步形式发送音讯,会阻塞在这里,直到发送实现
// producer.send(record).get();

// 异步形式发送音讯,不阻塞,设置一个监听回调函数即可
producer.send(record, new Callback() {
    @Override
    public void onCompletion(RecordMetadata metadata, Exception exception) {if(exception == null) {System.out.println("音讯发送胜利");
        } else {exception.printStackTrace();
        }
    }
});

    // 同步发送
    @Override
    public Future<RecordMetadata> send(ProducerRecord<K, V> record) {return send(record, null);
    }
    // 异步发送
    public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
        // intercept the record, which can be potentially modified; this method does not throw exceptions
        ProducerRecord<K, V> interceptedRecord = this.interceptors == null ? record : this.interceptors.onSend(record);
        return doSend(interceptedRecord, callback);
    }

同步和异步的整个发送逻辑如下图所示:

从上图你会发现,然而无论同步发送还是异步底层都会调用同一个办法 doSend()。区别就是有没有 callBack 回调函数而已,他们还都在调用前注册一些拦截器,这里咱们抓大放小下,咱们重点还是关注 doSend 办法。

doSend 办法如下:

/**
 * Implementation of asynchronously send a record to a topic. Equivalent to <code>send(record, null)</code>.
 * See {@link #send(ProducerRecord, Callback)} for details.
 */
private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
    TopicPartition tp = null;
    try {
        // first make sure the metadata for the topic is available
        long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs);
        long remainingWaitMs = Math.max(0, this.maxBlockTimeMs - waitedOnMetadataMs);
        byte[] serializedKey;
        try {serializedKey = keySerializer.serialize(record.topic(), record.key());
        } catch (ClassCastException cce) {throw new SerializationException("Can't convert key of class "+ record.key().getClass().getName() +" to class "+ producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() +" specified in key.serializer");
        }
        byte[] serializedValue;
        try {serializedValue = valueSerializer.serialize(record.topic(), record.value());
        } catch (ClassCastException cce) {throw new SerializationException("Can't convert value of class "+ record.value().getClass().getName() +" to class "+ producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() +" specified in value.serializer");
        }
        int partition = partition(record, serializedKey, serializedValue, metadata.fetch());
        int serializedSize = Records.LOG_OVERHEAD + Record.recordSize(serializedKey, serializedValue);
        ensureValidRecordSize(serializedSize);
        tp = new TopicPartition(record.topic(), partition);
        long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp();
        log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition);
        // producer callback will make sure to call both 'callback' and interceptor callback
        Callback interceptCallback = this.interceptors == null ? callback : new InterceptorCallback<>(callback, this.interceptors, tp);
        RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, interceptCallback, remainingWaitMs);
        if (result.batchIsFull || result.newBatchCreated) {log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
            this.sender.wakeup();}
        return result.future;
        // handling exceptions and record the errors;
        // for API exceptions return them in the future,
        // for other exceptions throw directly
    } catch (ApiException e) {log.debug("Exception occurred during message send:", e);
        if (callback != null)
            callback.onCompletion(null, e);
        this.errors.record();
        if (this.interceptors != null)
            this.interceptors.onSendError(record, tp, e);
        return new FutureFailure(e);
    } catch (InterruptedException e) {this.errors.record();
        if (this.interceptors != null)
            this.interceptors.onSendError(record, tp, e);
        throw new InterruptException(e);
    } catch (BufferExhaustedException e) {this.errors.record();
        this.metrics.sensor("buffer-exhausted-records").record();
        if (this.interceptors != null)
            this.interceptors.onSendError(record, tp, e);
        throw e;
    } catch (KafkaException e) {this.errors.record();
        if (this.interceptors != null)
            this.interceptors.onSendError(record, tp, e);
        throw e;
    } catch (Exception e) {
        // we notify interceptor about all exceptions, since onSend is called before anything else in this method
        if (this.interceptors != null)
            this.interceptors.onSendError(record, tp, e);
        throw e;
    }
}

这个办法的脉络尽管比拟长,然而脉络还是比拟清晰,次要先执行了:

1)waitOnMetadata 应该是期待元数据拉取

2)keySerializer.serialize 和 valueSerializer.serialize,很显著就是将 Record 序列化成 byte 字节数组

3)通过 partition 进行路由分区,依照肯定路由策略抉择 Topic 下的某个分区

4)accumulator.append 将音讯放入缓冲器中

5)唤醒 Sender 线程的 selector.select()的阻塞,开始解决内存缓冲器中的数据。

用图来示意如下所示:

这两节咱们重点剖析元数据拉取的这个场景的源码原理。

所以这里咱们着重先看下步骤 1,之后的 4 步咱们之后会剖析到的。

waitOnMetadata 如何期待元数据拉取的?

既然 send 的第一步是执行 waitOnMetadata 办法,首先看下它的代码:

 /**
     * Wait for cluster metadata including partitions for the given topic to be available.
     * @param topic The topic we want metadata for
     * @param maxWaitMs The maximum time in ms for waiting on the metadata
     * @return The amount of time we waited in ms
     */
    private long waitOnMetadata(String topic, long maxWaitMs) throws InterruptedException {
        // add topic to metadata topic list if it is not there already.
        if (!this.metadata.containsTopic(topic))
            this.metadata.add(topic);

        if (metadata.fetch().partitionsForTopic(topic) != null)
            return 0;

        long begin = time.milliseconds();
        long remainingWaitMs = maxWaitMs;
        while (metadata.fetch().partitionsForTopic(topic) == null) {log.trace("Requesting metadata update for topic {}.", topic);
            int version = metadata.requestUpdate();
            sender.wakeup();
            metadata.awaitUpdate(version, remainingWaitMs);
            long elapsed = time.milliseconds() - begin;
            if (elapsed >= maxWaitMs)
                throw new TimeoutException("Failed to update metadata after" + maxWaitMs + "ms.");
            if (metadata.fetch().unauthorizedTopics().contains(topic))
                throw new TopicAuthorizationException(topic);
            remainingWaitMs = maxWaitMs - elapsed;
        }
        return time.milliseconds() - begin;}

    /**
     * Get the current cluster info without blocking
     */
    public synchronized Cluster fetch() {return this.cluster;}

    public synchronized int requestUpdate() {
        this.needUpdate = true;
        return this.version;
    }

    /**
     * Wait for metadata update until the current version is larger than the last version we know of
     */
    public synchronized void awaitUpdate(final int lastVersion, final long maxWaitMs) throws InterruptedException {if (maxWaitMs < 0) {throw new IllegalArgumentException("Max time to wait for metadata updates should not be < 0 milli seconds");
        }
        long begin = System.currentTimeMillis();
        long remainingWaitMs = maxWaitMs;
        while (this.version <= lastVersion) {if (remainingWaitMs != 0)
                wait(remainingWaitMs);
            long elapsed = System.currentTimeMillis() - begin;
            if (elapsed >= maxWaitMs)
                throw new TimeoutException("Failed to update metadata after" + maxWaitMs + "ms.");
            remainingWaitMs = maxWaitMs - elapsed;
        }
    }

这个办法外围就是判断了是否有 Cluster 元数据信息,如果没有,进行了如下操作:

1)metadata.requestUpdate(); 更新了一个 needUpdate 标记,这个值会影响之前 maybeUpdate 的 metadataTimeout 的计算,能够让 metadataTimeout 为 0

2)sender.wakeup(); 唤醒之前 nioSelector.select()的阻塞,继续执行

3)metadata.awaitUpdate(version, remainingWaitMs); 次要进行了版本比拟,如果不是最新版本,调用了 Metadata.wait()办法(wait 办法是每个 Object 都会有的办法,个别和 notify 或者 notifyAll 组合应用)

整个过程我间接用图给大家示意一下,如下所示:

整个图就是明天咱们剖析的要害后果了,这里通过两种阻塞和唤醒机制,一个是 NIO 中 Selector 的 select()和 wakeUp(),一个是 MetaData 对象的 wait()和 notifyAll()机制。所以这里要联合之前 Sender 线程的阻塞逻辑一起来了解。

是不是很有意思一种应用,这里没有用任何线程的 join、sleep、wait、park、unpark、notify 这些办法。

小结

最初咱们简略小结下,这里一节咱们次要剖析了如下 Producer 的源码原理:

初始化 KafkaProducer 时并没有去拉取元数据,然而创立了 Selector 组件,启动了 Sender 线程,select 阻塞期待申请响应。因为还没有发送任何申请,所以初始化时并没有去真正拉取元数据。

真正拉取元数据是在第一次 send 办法调用时,会唤醒唤醒 Selector 之前阻塞的 select(), 进入第二次 while 循环,从而发送拉取元数据申请,并且通过 Obejct.wait 的机制期待 60s,等到从 Broker 拉取元数据胜利后,才会继续执行真正的生产音讯的申请,否则会报拉取元数据超时异样。

这一节咱们只是看到了进行了 wait 如何期待元数据拉取。

而唤醒 Selector 的 select 之后应该会进入第二次 while 循环

那第二次 while 循环如何发送申请拉取元数据申请,并且在胜利后 notifyAll()进行唤醒操作的呢?

让咱们下一节持续剖析,大家敬请期待!咱们下一节见!

本文由博客一文多发平台 OpenWrite 公布!

正文完
 0