关于spark:Uber-jvm-profiler-使用

93次阅读

共计 11153 个字符,预计需要花费 28 分钟才能阅读完成。

背景

uber jvm profiler 是用于在分布式监控收集 jvm 相干指标,如:cpu/memory/io/gc 信息等

装置

确保装置了 maven 和 JDK>= 8 前提下,间接 mvn clean package

java application

  • 阐明

    间接以 java agent 的部署就能够应用

  • 应用

    java -javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 -cp target/jvm-profiler-1.0.0.jar

  • 选项解释

    | 参数 | 阐明 |
    |——|—–|
    |reporter|reporter 类别, 此处间接默认为 com.uber.profiling.reporters.KafkaOutputReporter 就能够 |
    |brokerList| 如 reporter 为 com.uber.profiling.reporters.KafkaOutputReporter, 则 brokerList 为 kafka 列表, 以逗号分隔 |
    |topicPrefix| 如 reporter 为 com.uber.profiling.reporters.KafkaOutputReporter, 则 topicPrefix 为 kafka topic 的前缀 |
    |tag|key 为 tag 的 metric,会输入到 reporter 中 |
    |metricInterval|metric report 的频率,依据理论状况设置,单位为 ms|
    |sampleInterval|jvm 堆栈 metrics report 的频率,依据理论状况设置,单位为 ms|

  • 后果展现

      "nonHeapMemoryTotalUsed": 11890584.0,
      "bufferPools": [
          {
              "totalCapacity": 0,
              "name": "direct",
              "count": 0,
              "memoryUsed": 0
          },
          {
              "totalCapacity": 0,
              "name": "mapped",
              "count": 0,
              "memoryUsed": 0
          }
      ],
      "heapMemoryTotalUsed": 24330736.0,
      "epochMillis": 1515627003374,
      "nonHeapMemoryCommitted": 13565952.0,
      "heapMemoryCommitted": 257425408.0,
      "memoryPools": [
          {
              "peakUsageMax": 251658240,
              "usageMax": 251658240,
              "peakUsageUsed": 1194496,
              "name": "Code Cache",
              "peakUsageCommitted": 2555904,
              "usageUsed": 1173504,
              "type": "Non-heap memory",
              "usageCommitted": 2555904
          },
          {
              "peakUsageMax": -1,
              "usageMax": -1,
              "peakUsageUsed": 9622920,
              "name": "Metaspace",
              "peakUsageCommitted": 9830400,
              "usageUsed": 9622920,
              "type": "Non-heap memory",
              "usageCommitted": 9830400
          },
          {
              "peakUsageMax": 1073741824,
              "usageMax": 1073741824,
              "peakUsageUsed": 1094160,
              "name": "Compressed Class Space",
              "peakUsageCommitted": 1179648,
              "usageUsed": 1094160,
              "type": "Non-heap memory",
              "usageCommitted": 1179648
          },
          {
              "peakUsageMax": 1409286144,
              "usageMax": 1409286144,
              "peakUsageUsed": 24330736,
              "name": "PS Eden Space",
              "peakUsageCommitted": 67108864,
              "usageUsed": 24330736,
              "type": "Heap memory",
              "usageCommitted": 67108864
          },
          {
              "peakUsageMax": 11010048,
              "usageMax": 11010048,
              "peakUsageUsed": 0,
              "name": "PS Survivor Space",
              "peakUsageCommitted": 11010048,
              "usageUsed": 0,
              "type": "Heap memory",
              "usageCommitted": 11010048
          },
          {
              "peakUsageMax": 2863661056,
              "usageMax": 2863661056,
              "peakUsageUsed": 0,
              "name": "PS Old Gen",
              "peakUsageCommitted": 179306496,
              "usageUsed": 0,
              "type": "Heap memory",
              "usageCommitted": 179306496
          }
      ],
      "processCpuLoad": 0.0008024004394748531,
      "systemCpuLoad": 0.23138430784607697,
      "processCpuTime": 496918000,
      "appId": null,
      "name": "24103@machine01",
      "host": "machine01",
      "processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
      "tag": "mytag",
      "gc": [
          {
              "collectionTime": 0,
              "name": "PS Scavenge",
              "collectionCount": 0
          },
          {
              "collectionTime": 0,
              "name": "PS MarkSweep",
              "collectionCount": 0
          }

}


## spark application
 - 阐明     

 和 java 利用不同,须要把 jvm-profiler.jar 散发到各个节点上
 - 应用   
  --jars hdfs:///public/libs/jvm-profiler-1.0.0.jar   
  --conf spark.driver.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 
  --conf spark.executor.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0
  - 选项解释    

  
| 参数 | 阐明 |
|---|---|
|reporter|reporter 类别, 此处间接默认为 com.uber.profiling.reporters.KafkaOutputReporter 就能够 |
|brokerList| 如 reporter 为 com.uber.profiling.reporters.KafkaOutputReporter, 则 brokerList 为 kafka 列表, 以逗号分隔 |
|topicPrefix| 如 reporter 为 com.uber.profiling.reporters.KafkaOutputReporter, 则 topicPrefix 为 kafka topic 的前缀 |
|tag|key 为 tag 的 metric,会输入到 reporter 中 |
|metricInterval|metric report 的频率,依据理论状况设置,单位为 ms|
|sampleInterval|jvm 堆栈 metrics report 的频率,依据理论状况设置,单位为 ms|

  - 后果展现
"nonHeapMemoryTotalUsed": 11890584.0,
"bufferPools": [
    {
        "totalCapacity": 0,
        "name": "direct",
        "count": 0,
        "memoryUsed": 0
    },
    {
        "totalCapacity": 0,
        "name": "mapped",
        "count": 0,
        "memoryUsed": 0
    }
],
"heapMemoryTotalUsed": 24330736.0,
"epochMillis": 1515627003374,
"nonHeapMemoryCommitted": 13565952.0,
"heapMemoryCommitted": 257425408.0,
"memoryPools": [
    {
        "peakUsageMax": 251658240,
        "usageMax": 251658240,
        "peakUsageUsed": 1194496,
        "name": "Code Cache",
        "peakUsageCommitted": 2555904,
        "usageUsed": 1173504,
        "type": "Non-heap memory",
        "usageCommitted": 2555904
    },
    {
        "peakUsageMax": -1,
        "usageMax": -1,
        "peakUsageUsed": 9622920,
        "name": "Metaspace",
        "peakUsageCommitted": 9830400,
        "usageUsed": 9622920,
        "type": "Non-heap memory",
        "usageCommitted": 9830400
    },
    {
        "peakUsageMax": 1073741824,
        "usageMax": 1073741824,
        "peakUsageUsed": 1094160,
        "name": "Compressed Class Space",
        "peakUsageCommitted": 1179648,
        "usageUsed": 1094160,
        "type": "Non-heap memory",
        "usageCommitted": 1179648
    },
    {
        "peakUsageMax": 1409286144,
        "usageMax": 1409286144,
        "peakUsageUsed": 24330736,
        "name": "PS Eden Space",
        "peakUsageCommitted": 67108864,
        "usageUsed": 24330736,
        "type": "Heap memory",
        "usageCommitted": 67108864
    },
    {
        "peakUsageMax": 11010048,
        "usageMax": 11010048,
        "peakUsageUsed": 0,
        "name": "PS Survivor Space",
        "peakUsageCommitted": 11010048,
        "usageUsed": 0,
        "type": "Heap memory",
        "usageCommitted": 11010048
    },
    {
        "peakUsageMax": 2863661056,
        "usageMax": 2863661056,
        "peakUsageUsed": 0,
        "name": "PS Old Gen",
        "peakUsageCommitted": 179306496,
        "usageUsed": 0,
        "type": "Heap memory",
        "usageCommitted": 179306496
    }
],
"processCpuLoad": 0.0008024004394748531,
"systemCpuLoad": 0.23138430784607697,
"processCpuTime": 496918000,
"appId": null,
"name": "24103@machine01",
"host": "machine01",
"processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
"tag": "mytag",
"gc": [
    {
        "collectionTime": 0,
        "name": "PS Scavenge",
        "collectionCount": 0
    },
    {
        "collectionTime": 0,
        "name": "PS MarkSweep",
        "collectionCount": 0
    }
]

}

## 剖析

 - 已有的 reporter   
 
 
|reporter| 阐明 |
|---|---|
|[ConsoleOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/ConsoleOutputReporter.java#L25)| 默认的 repoter,个别用于调试 |
|[FileOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/FileOutputReporter.java#L34)| 基于文件的 reporter, 分布式环境下不实用,得设置 outputDir|
|[KafkaOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/KafkaOutputReporter.java#L36)| 基于 kafka 的 reporter,正式环境用的多,得设置 brokerList,topicPrefix|
|[GraphiteOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/GraphiteOutputReporter.java#L34)| 基于 Graphite 的 reporter, 需设置 graphite.host 等配置 |
|[RedisOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java_redis/com/uber/profiling/RedisOutputReporter.java#L16)| 基于 redis 的 reporter,构建命令 `mvn -P redis clean package`|
|[InfluxDBOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java_influxdb/com/uber/profiling/reporters/InfluxDBOutputReporter.java#L43)| 基于 InfluxDB 的 reporter,构建命令 `mvn -P influxdb clean package`,需设置 influxdb.host 等配置 |

倡议在生产环境下应用 KafkaOutputReporter,操作灵活性高,能够联合 clickhouse grafana 进行指标展现


- 源码剖析   

  该 jvm-profiler 整体是基于 (https://www.developer.com/java/data/what-is-java-agent.html) 实现, 我的项目[pom 文件](https://github.com/uber-common/jvm-profiler/blob/master/pom.xml#L105) 指定了 MANIFEST.MF 中的 Premain-Class 项和 Agent-Class 为[com.uber.profiling.Agent](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/Agent.java#L32)
  具体的实现类为[AgentImpl](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L47)   
  就具体的 AgentImpl 类的 run 办法来进行剖析

public void run(Arguments arguments, Instrumentation instrumentation, Collection<AutoCloseable> objectsToCloseOnShutdown) {

    if (arguments.isNoop()) {logger.info("Agent noop is true, do not run anything");
        return;
    }
    
    Reporter reporter = arguments.getReporter();

    String processUuid = UUID.randomUUID().toString();

    String appId = null;
    
    String appIdVariable = arguments.getAppIdVariable();
    if (appIdVariable != null && !appIdVariable.isEmpty()) {appId = System.getenv(appIdVariable);
    }
    
    if (appId == null || appId.isEmpty()) {appId = SparkUtils.probeAppId(arguments.getAppIdRegex());
    }

    if (!arguments.getDurationProfiling().isEmpty()
            || !arguments.getArgumentProfiling().isEmpty()) {instrumentation.addTransformer(new JavaAgentFileTransformer(arguments.getDurationProfiling(), arguments.getArgumentProfiling()));
    }

    List<Profiler> profilers = createProfilers(reporter, arguments, processUuid, appId);
    
    ProfilerGroup profilerGroup = startProfilers(profilers);

    Thread shutdownHook = new Thread(new ShutdownHookRunner(profilerGroup.getPeriodicProfilers(), Arrays.asList(reporter), objectsToCloseOnShutdown));
    Runtime.getRuntime().addShutdownHook(shutdownHook);
}

- [arguments.getReporter()](arguments.getReporter()) 获取 reporter,如果没有设置则设置为[reporterConstructor](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/Arguments.java#L264), 否则设置为指定的 reporter    
- [String appId](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L66) , 设置 appId,首先从配置中查找,如果没有设置,再从 env 中查找,对于 spark 利用则取 [spark.app.id](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/util/SparkUtils.java#L26) 的值   
- [List<Profiler> profilers = createProfilers(reporter, arguments, processUuid, appId)](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L133),创立 profilers, 默认有 CpuAndMemoryProfiler,ThreadInfoProfiler,ProcessInfoProfiler;1. 其中 [CpuAndMemoryProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/CpuAndMemoryProfiler.java#L39),[ThreadInfoProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/ThreadInfoProfiler.java#L15),[ProcessInfoProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/ProcessInfoProfiler.java#L33) 是从 JMX 中读取数据,ProcessInfoProfiler 还会从 [/pro](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/IOProfiler.java#L55)读取数据;2. 如果设置了 durationProfiling,argumentProfiling,sampleInterval,ioProfiling,则会减少对应的 MethodDurationProfiler(输入办法调用破费的工夫),MethodArgumentProfiler(输入办法参数的值),StacktraceReporterProfiler,IOProfiler;3.[MethodArgumentProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/MethodDurationProfiler.java#L29)和 [MethodDurationProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/MethodArgumentProfiler.java#L29) 利用 [javassist](https://github.com/jboss-javassist/javassist) 第三方字节码编译工具来改写对应的类,具体实现参照[JavaAgentFileTransformer](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/transformers/JavaAgentFileTransformer.java#L35)   
4.[StacktraceReporterProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/StacktraceReporterProfiler.java#L35)从 JMX 中读取数据    
5.[IOProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/IOProfiler.java#L27)则是读取本地机器上的 [/pro](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/IOProfiler.java#L55) 文件对应的目录的数据    
- [ProfilerGroup profilerGroup = startProfilers(profilers)](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L90)   开始进行 profiler 的定时 report    
其中还会辨别 oneTimeProfilers 和 periodicProfilers,ProcessInfoProfiler 就属于 oneTimeProfilers,因为 process 的信息,在运行期间是不会变的,不须要周期行的 reporter   
至此,整个流程完结   

正文完
 0