关于spark:Uber-jvm-profiler-使用

背景

uber jvm profiler是用于在分布式监控收集jvm 相干指标,如:cpu/memory/io/gc信息等

装置

确保装置了maven和JDK>=8前提下,间接mvn clean package

java application

  • 阐明

    间接以java agent的部署就能够应用

  • 应用

    java -javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 -cp target/jvm-profiler-1.0.0.jar

  • 选项解释

    |参数|阐明|
    |——|—–|
    |reporter|reporter类别, 此处间接默认为com.uber.profiling.reporters.KafkaOutputReporter就能够|
    |brokerList|如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则brokerList为kafka列表,以逗号分隔|
    |topicPrefix|如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则topicPrefix为kafka topic的前缀|
    |tag|key为tag的metric,会输入到reporter中|
    |metricInterval|metric report的频率,依据理论状况设置,单位为ms|
    |sampleInterval|jvm堆栈metrics report的频率,依据理论状况设置,单位为ms|

  • 后果展现

      "nonHeapMemoryTotalUsed": 11890584.0,
      "bufferPools": [
          {
              "totalCapacity": 0,
              "name": "direct",
              "count": 0,
              "memoryUsed": 0
          },
          {
              "totalCapacity": 0,
              "name": "mapped",
              "count": 0,
              "memoryUsed": 0
          }
      ],
      "heapMemoryTotalUsed": 24330736.0,
      "epochMillis": 1515627003374,
      "nonHeapMemoryCommitted": 13565952.0,
      "heapMemoryCommitted": 257425408.0,
      "memoryPools": [
          {
              "peakUsageMax": 251658240,
              "usageMax": 251658240,
              "peakUsageUsed": 1194496,
              "name": "Code Cache",
              "peakUsageCommitted": 2555904,
              "usageUsed": 1173504,
              "type": "Non-heap memory",
              "usageCommitted": 2555904
          },
          {
              "peakUsageMax": -1,
              "usageMax": -1,
              "peakUsageUsed": 9622920,
              "name": "Metaspace",
              "peakUsageCommitted": 9830400,
              "usageUsed": 9622920,
              "type": "Non-heap memory",
              "usageCommitted": 9830400
          },
          {
              "peakUsageMax": 1073741824,
              "usageMax": 1073741824,
              "peakUsageUsed": 1094160,
              "name": "Compressed Class Space",
              "peakUsageCommitted": 1179648,
              "usageUsed": 1094160,
              "type": "Non-heap memory",
              "usageCommitted": 1179648
          },
          {
              "peakUsageMax": 1409286144,
              "usageMax": 1409286144,
              "peakUsageUsed": 24330736,
              "name": "PS Eden Space",
              "peakUsageCommitted": 67108864,
              "usageUsed": 24330736,
              "type": "Heap memory",
              "usageCommitted": 67108864
          },
          {
              "peakUsageMax": 11010048,
              "usageMax": 11010048,
              "peakUsageUsed": 0,
              "name": "PS Survivor Space",
              "peakUsageCommitted": 11010048,
              "usageUsed": 0,
              "type": "Heap memory",
              "usageCommitted": 11010048
          },
          {
              "peakUsageMax": 2863661056,
              "usageMax": 2863661056,
              "peakUsageUsed": 0,
              "name": "PS Old Gen",
              "peakUsageCommitted": 179306496,
              "usageUsed": 0,
              "type": "Heap memory",
              "usageCommitted": 179306496
          }
      ],
      "processCpuLoad": 0.0008024004394748531,
      "systemCpuLoad": 0.23138430784607697,
      "processCpuTime": 496918000,
      "appId": null,
      "name": "24103@machine01",
      "host": "machine01",
      "processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
      "tag": "mytag",
      "gc": [
          {
              "collectionTime": 0,
              "name": "PS Scavenge",
              "collectionCount": 0
          },
          {
              "collectionTime": 0,
              "name": "PS MarkSweep",
              "collectionCount": 0
          }

}


## spark application
 - 阐明     

 和java利用不同,须要把jvm-profiler.jar散发到各个节点上
 - 应用   
  --jars hdfs:///public/libs/jvm-profiler-1.0.0.jar   
  --conf spark.driver.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 
  --conf spark.executor.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0
  - 选项解释    

  
|参数|阐明|
|---|---|
|reporter|reporter类别, 此处间接默认为com.uber.profiling.reporters.KafkaOutputReporter就能够|
|brokerList|如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则brokerList为kafka列表,以逗号分隔|
|topicPrefix|如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则topicPrefix为kafka topic的前缀|
|tag|key为tag的metric,会输入到reporter中|
|metricInterval|metric report的频率,依据理论状况设置,单位为ms|
|sampleInterval|jvm堆栈metrics report的频率,依据理论状况设置,单位为ms|

  - 后果展现
"nonHeapMemoryTotalUsed": 11890584.0,
"bufferPools": [
    {
        "totalCapacity": 0,
        "name": "direct",
        "count": 0,
        "memoryUsed": 0
    },
    {
        "totalCapacity": 0,
        "name": "mapped",
        "count": 0,
        "memoryUsed": 0
    }
],
"heapMemoryTotalUsed": 24330736.0,
"epochMillis": 1515627003374,
"nonHeapMemoryCommitted": 13565952.0,
"heapMemoryCommitted": 257425408.0,
"memoryPools": [
    {
        "peakUsageMax": 251658240,
        "usageMax": 251658240,
        "peakUsageUsed": 1194496,
        "name": "Code Cache",
        "peakUsageCommitted": 2555904,
        "usageUsed": 1173504,
        "type": "Non-heap memory",
        "usageCommitted": 2555904
    },
    {
        "peakUsageMax": -1,
        "usageMax": -1,
        "peakUsageUsed": 9622920,
        "name": "Metaspace",
        "peakUsageCommitted": 9830400,
        "usageUsed": 9622920,
        "type": "Non-heap memory",
        "usageCommitted": 9830400
    },
    {
        "peakUsageMax": 1073741824,
        "usageMax": 1073741824,
        "peakUsageUsed": 1094160,
        "name": "Compressed Class Space",
        "peakUsageCommitted": 1179648,
        "usageUsed": 1094160,
        "type": "Non-heap memory",
        "usageCommitted": 1179648
    },
    {
        "peakUsageMax": 1409286144,
        "usageMax": 1409286144,
        "peakUsageUsed": 24330736,
        "name": "PS Eden Space",
        "peakUsageCommitted": 67108864,
        "usageUsed": 24330736,
        "type": "Heap memory",
        "usageCommitted": 67108864
    },
    {
        "peakUsageMax": 11010048,
        "usageMax": 11010048,
        "peakUsageUsed": 0,
        "name": "PS Survivor Space",
        "peakUsageCommitted": 11010048,
        "usageUsed": 0,
        "type": "Heap memory",
        "usageCommitted": 11010048
    },
    {
        "peakUsageMax": 2863661056,
        "usageMax": 2863661056,
        "peakUsageUsed": 0,
        "name": "PS Old Gen",
        "peakUsageCommitted": 179306496,
        "usageUsed": 0,
        "type": "Heap memory",
        "usageCommitted": 179306496
    }
],
"processCpuLoad": 0.0008024004394748531,
"systemCpuLoad": 0.23138430784607697,
"processCpuTime": 496918000,
"appId": null,
"name": "24103@machine01",
"host": "machine01",
"processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
"tag": "mytag",
"gc": [
    {
        "collectionTime": 0,
        "name": "PS Scavenge",
        "collectionCount": 0
    },
    {
        "collectionTime": 0,
        "name": "PS MarkSweep",
        "collectionCount": 0
    }
]

}

## 剖析

 - 已有的reporter   
 
 
|reporter|阐明|
|---|---|
|[ConsoleOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/ConsoleOutputReporter.java#L25)|默认的repoter,个别用于调试|
|[FileOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/FileOutputReporter.java#L34)|基于文件的reporter,分布式环境下不实用,得设置outputDir|
|[KafkaOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/KafkaOutputReporter.java#L36)|基于kafka的reporter,正式环境用的多,得设置brokerList,topicPrefix|
|[GraphiteOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/reporters/GraphiteOutputReporter.java#L34)|基于Graphite的reporter,需设置graphite.host等配置|
|[RedisOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java_redis/com/uber/profiling/RedisOutputReporter.java#L16)|基于redis的reporter,构建命令 `mvn -P redis clean package`|
|[InfluxDBOutputReporter](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java_influxdb/com/uber/profiling/reporters/InfluxDBOutputReporter.java#L43)|基于InfluxDB的reporter,构建命令`mvn -P influxdb clean package`,需设置influxdb.host等配置|

倡议在生产环境下应用KafkaOutputReporter,操作灵活性高,能够联合clickhouse grafana进行指标展现


- 源码剖析   

  该jvm-profiler整体是基于[java agent](https://www.developer.com/java/data/what-is-java-agent.html)实现,我的项目[pom文件](https://github.com/uber-common/jvm-profiler/blob/master/pom.xml#L105) 指定了MANIFEST.MF中的Premain-Class项和Agent-Class为[com.uber.profiling.Agent](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/Agent.java#L32)
  具体的实现类为[AgentImpl](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L47)   
  就具体的AgentImpl类的run办法来进行剖析

public void run(Arguments arguments, Instrumentation instrumentation, Collection<AutoCloseable> objectsToCloseOnShutdown) {

    if (arguments.isNoop()) {
        logger.info("Agent noop is true, do not run anything");
        return;
    }
    
    Reporter reporter = arguments.getReporter();

    String processUuid = UUID.randomUUID().toString();

    String appId = null;
    
    String appIdVariable = arguments.getAppIdVariable();
    if (appIdVariable != null && !appIdVariable.isEmpty()) {
        appId = System.getenv(appIdVariable);
    }
    
    if (appId == null || appId.isEmpty()) {
        appId = SparkUtils.probeAppId(arguments.getAppIdRegex());
    }

    if (!arguments.getDurationProfiling().isEmpty()
            || !arguments.getArgumentProfiling().isEmpty()) {
        instrumentation.addTransformer(new JavaAgentFileTransformer(arguments.getDurationProfiling(), arguments.getArgumentProfiling()));
    }

    List<Profiler> profilers = createProfilers(reporter, arguments, processUuid, appId);
    
    ProfilerGroup profilerGroup = startProfilers(profilers);

    Thread shutdownHook = new Thread(new ShutdownHookRunner(profilerGroup.getPeriodicProfilers(), Arrays.asList(reporter), objectsToCloseOnShutdown));
    Runtime.getRuntime().addShutdownHook(shutdownHook);
}

- [arguments.getReporter()](arguments.getReporter()) 获取reporter,如果没有设置则设置为[reporterConstructor](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/Arguments.java#L264),否则设置为指定的reporter    
- [String appId](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L66) ,设置appId,首先从配置中查找,如果没有设置,再从env中查找,对于spark利用则取[spark.app.id](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/util/SparkUtils.java#L26)的值   
- [List<Profiler> profilers = createProfilers(reporter, arguments, processUuid, appId)](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L133),创立profilers,默认有CpuAndMemoryProfiler,ThreadInfoProfiler,ProcessInfoProfiler ;   
1.其中[CpuAndMemoryProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/CpuAndMemoryProfiler.java#L39),[ThreadInfoProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/ThreadInfoProfiler.java#L15),[ProcessInfoProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/ProcessInfoProfiler.java#L33)是从JMX中读取数据,ProcessInfoProfiler还会从 [/pro](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/IOProfiler.java#L55)读取数据;     
2.如果设置了durationProfiling,argumentProfiling,sampleInterval,ioProfiling,则会减少对应的MethodDurationProfiler(输入办法调用破费的工夫),MethodArgumentProfiler(输入办法参数的值),StacktraceReporterProfiler,IOProfiler;  
3.[MethodArgumentProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/MethodDurationProfiler.java#L29)和[MethodDurationProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/MethodArgumentProfiler.java#L29)利用[javassist](https://github.com/jboss-javassist/javassist)第三方字节码编译工具来改写对应的类,具体实现参照[JavaAgentFileTransformer](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/transformers/JavaAgentFileTransformer.java#L35)   
4.[StacktraceReporterProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/StacktraceReporterProfiler.java#L35)从JMX中读取数据    
5.[IOProfiler](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/IOProfiler.java#L27)则是读取本地机器上的[/pro](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/profilers/IOProfiler.java#L55)文件对应的目录的数据    
- [ProfilerGroup profilerGroup = startProfilers(profilers)](https://github.com/uber-common/jvm-profiler/blob/master/src/main/java/com/uber/profiling/AgentImpl.java#L90)   开始进行profiler的定时report    
其中还会辨别oneTimeProfilers和periodicProfilers,ProcessInfoProfiler就属于oneTimeProfilers,因为process的信息,在运行期间是不会变的,不须要周期行的reporter   
至此,整个流程完结   

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理