关于spark:spark相关介绍提取hive表一

47次阅读

共计 14213 个字符,预计需要花费 36 分钟才能阅读完成。

本文环境阐明

centos 服务器
jupyter 的 scala 核 spylon-kernel
spark-2.4.0
scala-2.11.12
hadoop-2.6.0

本文次要内容

  • spark 读取 hive 表的数据,次要包含间接 sql 读取 hive 表;通过 hdfs 文件读取 hive 表,以及 hive 分区表的读取。
  • 通过 jupyter 上的 cell 来初始化 sparksession。
  • 文末还有通过 spark 提取 hdfs 文件的残缺示例

jupyter 配置文件

  • 咱们能够在 jupyter 的 cell 框外面,对 spark 的 session 做出对应的初始化,具体能够见上面的示例。
%%init_spark
launcher.master = "local[*]"
launcher.conf.spark.app.name = "BDP-xw"
launcher.conf.spark.driver.cores = 2
launcher.conf.spark.num_executors = 3
launcher.conf.spark.executor.cores = 4
launcher.conf.spark.driver.memory = '4g'
launcher.conf.spark.executor.memory = '4g'
// launcher.conf.spark.serializer = "org.apache.spark.serializer.KryoSerializer"
// launcher.conf.spark.kryoserializer.buffer.max = '4g'
import org.apache.spark.sql.SparkSession
var NumExecutors = spark.conf.getOption("spark.num_executors").repr
var ExecutorMemory = spark.conf.getOption("spark.executor.memory").repr
var AppName = spark.conf.getOption("spark.app.name").repr
var max_buffer = spark.conf.getOption("spark.kryoserializer.buffer.max").repr
println(f"Config as follows: \nNumExecutors: $NumExecutors, \nAppName: $AppName,\nmax_buffer:$max_buffer")

  • 间接查看咱们初始化的 sparksession 对应的环境各变量

从 hive 中取数

间接 sparksql 走起
import org.apache.spark.sql.SparkSession
val sql_1 = """select * from tbs limit 4"""
var df = sql(sql_1)
df.show(5, false)

通过 hdfs 取数
  • 具体示例能够参考文末的从 hdfs 取数残缺脚本示例
object LoadingData_from_hdfs_base extends mylog{// with Logging
    ...
    
    def main(args: Array[String]=Array("tb1", "3", "\001", "cols", "")): Unit = {if (args.length < 2) {println("Usage: LoadingData_from_hdfs <tb_name, parts. sep_line, cols, paths>")
           System.err.println("Usage: LoadingData_from_hdfs <tb_name, parts, sep_line, cols, paths>")
           System.exit(1)
          }
        log.warn("开始啦调度")
        val tb_name = args(0)
        val parts = args(1)
        val sep_line = args(2)
        val select_col = args(3)
        val save_paths = args(4)
        val select_cols = select_col.split("#").toSeq
        log.warn(s"Loading cols are : \n $select_cols")
        val gb_sql = s"DESCRIBE FORMATTED ${tb_name}"
        val gb_desc = sql(gb_sql)
        val hdfs_address = gb_desc.filter($"col_name".contains("Location")).take(1)(0).getString(1)
        val hdfs_address_cha = s"$hdfs_address/*/"
        val Cs = new DataProcess_base(spark)
        val tb_desc = Cs.get_table_desc(tb_name)
        val raw_data = Cs.get_hdfs_data(hdfs_address)
        val len1 = raw_data.map(item => item.split(sep_line)).first.length
        val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString)
        val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType)))
        val rawRDD = raw_data.map(_.split(sep_line).map(_.toString)).map(p => Row(p: _*)).filter(_.length == len1)
        val df_data = spark.createDataFrame(rawRDD, schema1)//.filter("custommsgtype ='1'")
        val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left")
        val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)//.limit(100)
        df_gb_result.show(5, false)
        ...
//         spark.stop()}
}
val cols = "area_name#city_name#province_name"
val tb_name = "tb1"
val sep_line = "\u0001"
// 执行脚本
LoadingData_from_hdfs_base.main(Array(tb_name, "4", sep_line, cols, ""))

)

判断门路是否为文件夹

  • 形式 1
def pathIsExist(spark: SparkSession, path: String): Boolean = {val filePath = new org.apache.hadoop.fs.Path( path)
    val fileSystem = filePath.getFileSystem(spark.sparkContext.hadoopConfiguration)
    fileSystem.exists(filePath)
}

pathIsExist(spark, hdfs_address)

// 失去后果如下:// pathIsExist: (spark: org.apache.spark.sql.SparkSession, path: String)Boolean
// res4: Boolean = true
  • 形式 2
import java.io.File
val d = new File("/usr/local/xw")
d.isDirectory

// 失去后果如下:// d: java.io.File = /usr/local/xw
// res3: Boolean = true

分区表读取源数据

  • 对分区文件须要留神下,须要保障原始的 hdfs 上的 raw 文件外面是否有对应的分区字段值

    • 如果分区字段在 hdfs 中的原始文件中,则能够间接通过通过 hdfs 取数
    • 若原始文件中,不包含分区字段信息,则须要依照以下形式取数啦
    • 具体示例能够参考文末的从 hdfs 取数残缺脚本示例
单个文件读取
object LoadingData_from_hdfs_onefile_with_path extends mylog{def main(args: Array[String]=Array("tb_name", "hdfs:/", "3","\n", "\001", "cols", "")): Unit = {
        ...
        val hdfs_address = args(1)
        val len1 = raw_data.map(item => item.split(sep_line)).first.length
        val rawRDD = raw_data.flatMap(line => line.split(sep_text)).map(word => (word.split(sep_line):+hdfs_address)).map(p => Row(p: _*))
        println(rawRDD.take(2))  
        val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString)
        import org.apache.spark.sql.types.StructType
        val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType)))
        val new_schema1 = schema1.add(StructField("path", StringType))
        val df_data = spark.createDataFrame(rawRDD, new_schema1)
        val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left")
        // df_desc.show(false)
        val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)//.limit(100)
        df_gb_result.show(5, false)
        ...
//         spark.stop()}
}
val file1 = "hdfs:file1.csv"
val tb_name = "tb_name"
val sep_text = "\n"
val sep_line = "\001"
val cols = "city#province#etl_date#path"
// 执行脚本
LoadingData_from_hdfs_onefile_with_path.main(Array(tb_name, file1, "4", sep_line, sep_text, cols, ""))

多个文件读取尝试 1
  • 通过 wholeTextFiles 读取文件夹外面的文件时,保留文件名信息;
  • 具体示例能够参考文末的从 hdfs 取数残缺脚本示例
object LoadingData_from_hdfs_wholetext_with_path extends mylog{// with Logging
    ...
    
    def main(args: Array[String]=Array("tb1", "hdfs:/", "3","\n", "\001", "cols", "")): Unit = {
        ...
        val tb_name = args(0)
        val hdfs_address = args(1)
        val parts = args(2)
        val sep_line = args(3)
        val sep_text = args(4)
        val select_col = args(5) 
        val save_paths = args(6)
        val select_cols = select_col.split("#").toSeq
        val Cs = new DataProcess_get_data(spark)
        val tb_desc = Cs.get_table_desc(tb_name)
        val rddWhole = spark.sparkContext.wholeTextFiles(s"$hdfs_address", 10)
        rddWhole.foreach(f=>{println(f._1+"数据量是 =>"+f._2.split("\n").length)
        })
        val files = rddWhole.collect
        val len1 = files.flatMap(item => item._2.split(sep_text)).take(1).flatMap(items=>items.split(sep_line)).length
        val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString)
        import org.apache.spark.sql.types.StructType
        // 解析 wholeTextFiles 读取的后果并转化成 dataframe
        val wordCount = files.map(f=>f._2.split(sep_text).map(g=>g.split(sep_line):+f._1.split("/").takeRight(1)(0))).flatMap(h=>h).map(p => Row(p: _*))
        val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType)))
        val new_schema1 = schema1.add(StructField("path", StringType))
        val rawRDD = sc.parallelize(wordCount)
        val df_data = spark.createDataFrame(rawRDD, new_schema1)
        val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left")
        //df_desc.show(false)
        val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)
        df_gb_result.show(5, false)
        println("生成的 dataframe, 依 path 列 groupby 的后果如下")
        df_gb_result.groupBy("path").count().show(false)
        ...
//         spark.stop()}
}
val file1 = "hdfs:file1_1[01].csv"
val tb_name = "tb_name"
val sep_text = "\n"
val sep_line = "\001"
val cols = "city#province#etl_date#path"
// 执行脚本
LoadingData_from_hdfs_wholetext_with_path.main(Array(tb_name, file1, "4", sep_line, sep_text, cols, ""))

读取多文件且保留文件名为列名技术实现
  • 以下实现性能

    • Array[(String, String)] 类型的按 (String, String) 拆成多行;
    • 将 (String, String) 中的第 2 个元素,依照 \n 宰割符分成多行,按 \? 分隔符分成多列;
    • 将 (String, String) 中的第 1 个元素,别离加到 2 中的每行前面。在 dataframe 中出现的就是新增一列啦
  • 业务场景

    • 如果要一次读取多个文件,且绝对合并后的数据集中,对数据来源于哪一个文件作出辨别。
      <!– #endregion –>
// 测试用例,次要是把 wholetextfile 失去的后果转化为 DataFrame
val test1 = Array(("abasdfsdf", "a?b?c?d\nc?d?d?e"), ("sdfasdf", "b?d?a?e\nc?d?e?f"))
val test2 = test1.map(line=>line._2.split("\n").map(line1=>line1.split("\\?"):+line._1)).flatMap(line2=>line2).map(p => Row(p: _*))
val cols = "cn1#cn2#cn3#cn4#path"
val names = cols.split("#")
val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType)))
val rawRDD = sc.parallelize(test2)
val df_data = spark.createDataFrame(rawRDD, schema1)
df_data.show(4, false)
test1

多个文件读取 for 循环
  • 通过 for 循环遍历读取文件夹外面的文件时,保留文件名信息;
  • 具体示例能够参考文末的从 hdfs 取数残缺脚本示例
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row}
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.functions.monotonically_increasing_id
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType}
import org.apache.hadoop.fs.{FileSystem, Path}

Logger.getLogger("org").setLevel(Level.WARN)
// val log = Logger.getLogger(this.getClass)
@transient lazy val log:Logger = Logger.getLogger(this.getClass)

class DataProcess_get_data_byfor (ss: SparkSession) extends java.io.Serializable{
  import ss.implicits._
  import ss.sql
  import org.apache.spark.sql.types.DataTypes
  
  ...
    
  def union_dataframe(df_1:RDD[String], df_2:RDD[String]):RDD[String] ={val count1 = df_1.map(item=>item.split(sep_line)).take(1)(0).length
    val count2 = df_2.map(item=>item.split(sep_line)).take(1)(0).length
    val name2 = df_2.name.split("/").takeRight(1)(0)
    val arr2 = df_2.map(item=>item.split(sep_line):+name2).map(p => Row(p: _*))
    println(s"运行到这儿了")
    var name1 = ""
    var arr1 = ss.sparkContext.makeRDD(List().map(p => Row(p: _*)))
//     var arr1 = Array[org.apache.spark.sql.Row]
    if (count1 == count2){name1 = df_1.name.split("/").takeRight(1)(0)
        arr1 = df_1.map(item=>item.split(sep_line):+name1).map(p => Row(p: _*))
        // arr1.foreach(f=>print(s"arr1 嘞 $f" + f.length + "\n"))
        println(s"运行到这儿了没?$count1~$count2 $name1/$name2")
        arr1
    }
    else{println(s"运行到这儿了不相等哈?$count1~$count2 $name1/$name2")
        arr1 = df_1.map(item=>item.split(sep_line)).map(p => Row(p: _*))
    }
    var rawRDD = arr1.union(arr2)
    // arr3.foreach(f=>print(s"$f" + f.length + "\n"))
    // var rawRDD = sc.parallelize(arr3)
    var sourceRdd = rawRDD.map(_.mkString(sep_line))
//     var count31 = arr1.take(1)(0).length
//     var count32 = arr2.take(1)(0).length
//     var count3 = sourceRdd.map(item=>item.split(sep_line)).take(1)(0).length
//     var nums = sourceRdd.count
//     print(s"arr1: $count31、arr2: $count32、arr3: $count3, 数据量为:$nums")
    sourceRdd
}
}
object LoadingData_from_hdfs_text_with_path_byfor extends mylog{// with Logging
    ...
    
    def main(args: Array[String]=Array("tb1", "hdfs:/", "3","\n", "\001", "cols","data1", "test", "")): Unit = {
        ...
        val hdfs_address = args(1)
        ...
        val pattern = args(6)
        val pattern_no = args(7)
        val select_cols = select_col.split("#").toSeq
        log.warn(s"Loading cols are : \n $select_cols")
        val files = FileSystem.get(spark.sparkContext.hadoopConfiguration).listStatus(new Path(s"$hdfs_address"))
        val files_name = files.toList.map(f=> f.getPath.getName)
        val file_filter = files_name.filter(_.contains(pattern)).filterNot(_.contains(pattern_no))
        val df_1 = file_filter.map(item=> sc.textFile(s"$path1$item"))
        df_1.foreach(f=>{println(f + "数据量是" +  f.count)
        })
        val df2 = df_1.reduce(_ union _)
        println("合并后的数据量是" + df2.count)
        val Cs = new DataProcess_get_data_byfor(spark)
        ...
        // 将 for 循环读取的后果合并起来
        val result = df_1.reduce((a, b)=>union_dataframe(a, b))
        val result2 = result.map(item=>item.split(sep_line)).map(p => Row(p: _*))
        val df_data = spark.createDataFrame(result2, new_schema1)
        val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left")
        println("\n")
        //df_desc.show(false)
        val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)
        df_gb_result.show(5, false)
        println("生成的 dataframe, 依 path 列 groupby 的后果如下")
        df_gb_result.groupBy("path").count().show(false)
        ...
//         spark.stop()}
}
val path1 = "hdfs:202001/"
val tb_name = "tb_name"
val sep_text = "\n"
val sep_line = "\001"
val cols = "city#province#etl_date#path"
val pattern = "result_copy_1"
val pattern_no = "1.csv"
// val file_filter = List("file1_10.csv", "file_12.csv", "file_11.csv")
// 执行脚本
LoadingData_from_hdfs_text_with_path_byfor.main(Array(tb_name, path1, "4", sep_line, sep_text, cols, pattern, pattern_no, ""))

执行脚本的残缺示例

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.monotonically_increasing_id
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType}

Logger.getLogger("org").setLevel(Level.WARN)
val log = Logger.getLogger(this.getClass)

class DataProcess_base (ss: SparkSession) extends java.io.Serializable{
  import ss.implicits._
  import ss.sql
  import org.apache.spark.sql.types.DataTypes
  
  def get_table_desc(tb_name:String="tb"):DataFrame ={val gb_sql = s"desc ${tb_name}"
    val gb_desc = sql(gb_sql)
    val names = gb_desc.filter(!$"col_name".contains("#")).withColumn("id", monotonically_increasing_id())
    names
  }
  
  def get_hdfs_data(hdfs_address:String="hdfs:"):RDD[String]={val gb_data = ss.sparkContext.textFile(hdfs_address)
      gb_data.cache()
      val counts1 = gb_data.count
      println(f"the rows of origin hdfs data is $counts1%-1d")
      gb_data
  }
}
object LoadingData_from_hdfs_base extends mylog{// with Logging
    Logger.getLogger("org").setLevel(Level.WARN)
    val conf = new SparkConf()
    conf.setMaster("yarn")

    conf.setAppName("LoadingData_From_hdfs")
    conf.set("spark.home", System.getenv("SPARK_HOME"))
    val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
    import spark.implicits._
    import spark.sql
    var UIAddress = spark.conf.getOption("spark.driver.appUIAddress").repr
    var yarnserver = spark.conf.getOption("spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_URI_BASES").repr
    println(f"Config as follows: \nUIAddress: $UIAddress, \nyarnserver: $yarnserver")

    def main(args: Array[String]=Array("tb1", "3", "\001", "cols", "")): Unit = {if (args.length < 2) {println("Usage: LoadingData_from_hdfs <tb_name, parts. sep_line, cols, paths>")
           System.err.println("Usage: LoadingData_from_hdfs <tb_name, parts, sep_line, cols, paths>")
           System.exit(1)
          }
        log.warn("开始啦调度")
        val tb_name = args(0)
        val parts = args(1)
        val sep_line = args(2)
        val select_col = args(3)
        val save_paths = args(4)
        val select_cols = select_col.split("#").toSeq
        log.warn(s"Loading cols are : \n $select_cols")
        val gb_sql = s"DESCRIBE FORMATTED ${tb_name}"
        val gb_desc = sql(gb_sql)
        val hdfs_address = gb_desc.filter($"col_name".contains("Location")).take(1)(0).getString(1)
        println(s"tbname 门路是 $hdfs_address")
        val hdfs_address_cha = s"$hdfs_address/*/"
        val Cs = new DataProcess_base(spark)
        val tb_desc = Cs.get_table_desc(tb_name)
        val raw_data = Cs.get_hdfs_data(hdfs_address)
        val len1 = raw_data.map(item => item.split(sep_line)).first.length
        val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString)
        val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType)))
        val rawRDD = raw_data.map(_.split(sep_line).map(_.toString)).map(p => Row(p: _*)).filter(_.length == len1)
        val df_data = spark.createDataFrame(rawRDD, schema1)//.filter("custommsgtype ='1'")
        val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left")
        val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)//.limit(100)
        df_gb_result.show(5, false)
        println("生成的 dataframe, 依 path 列 groupby 的后果如下")
        // val part = parts.toInt
        // df_gb_result.repartition(part).write.mode("overwrite").option("header","true").option("sep","#").csv(save_paths)
        // log.warn(f"the rows of origin data compare to mysql results is $ncounts1%-1d VS $ncounts3%-4d")
        //         spark.stop()}
}


val cols = "area_name#city_name#province_name"
val tb_name = "tb1"
val sep_line = "\u0001"
// 执行脚本
LoadingData_from_hdfs_base.main(Array(tb_name, "4", sep_line, cols, ""))

正文完
 0