共计 3845 个字符,预计需要花费 10 分钟才能阅读完成。
背景
mlflow 是 Databrick 开源的机器学习治理平台,它很好的解藕了算法训练和算法模型服务,使得算法工程师专一于模型的训练,而不须要过多的关注于服务的,
而且在咱们公司曾经有十多个服务稳固运行了两年多。
搭建
mlflow 的搭建次要是 mlflow tracking server 的搭建,tracking server 次要是用于模型的元数据以及模型的数据存储
咱们这次以 minio 作为模型数据的存储后盾,mysql 作为模型元数据的存储,因为这种模式能满足线上的需要,不仅仅是用于测试
- minio 的搭建
参考我之前的文章 MinIO 的搭建应用,并且创立名为 mlflow 的 bucket,便于后续操作 -
mlflow 的搭建
- conda 的装置
参照 install conda, 依据本人的零碎装置不同的 conda 环境 -
mlfow tracking server 装置
# 创立 conda 环境 并装置 python 3.6 conda create -n mlflow-1.11.0 python==3.6 #激活 conda 环境 conda activate mlflow-1.11.0 # 装置 mlfow tracking server python 须要的依赖包 pip install mlflow==1.11.0 pip install mysqlclient pip install boto3 -
mlflow tracking server 的启动
暴露出 minio url 以及须要的 ID 和 KEY,因为 mlflow tracking server 在上传模型文件时须要 export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY export MLFLOW_S3_ENDPOINT_URL=http://localhost:9001 mlflow server \ --backend-store-uri mysql://root:AO,h07ObIeH-@localhost/mlflow_test \ --host 0.0.0.0 -p 5002 \ --default-artifact-root s3://mlflow 拜访 localhost:5002, 就能看到如下界面:
- conda 的装置
应用
拷贝以下的 wine.py 文件
import os | |
import warnings | |
import sys | |
import pandas as pd | |
import numpy as np | |
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import ElasticNet | |
import mlflow.sklearn | |
def eval_metrics(actual, pred): | |
rmse = np.sqrt(mean_squared_error(actual, pred)) | |
mae = mean_absolute_error(actual, pred) | |
r2 = r2_score(actual, pred) | |
return rmse, mae, r2 | |
if __name__ == "__main__": | |
warnings.filterwarnings("ignore") | |
np.random.seed(40) | |
# Read the wine-quality csv file (make sure you're running this from the root of MLflow!) | |
wine_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "wine-quality.csv") | |
data = pd.read_csv(wine_path) | |
# Split the data into training and test sets. (0.75, 0.25) split. | |
train, test = train_test_split(data) | |
# The predicted column is "quality" which is a scalar from [3, 9] | |
train_x = train.drop(["quality"], axis=1) | |
test_x = test.drop(["quality"], axis=1) | |
train_y = train[["quality"]] | |
test_y = test[["quality"]] | |
alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5 | |
l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5 | |
mlflow.set_tracking_uri("http://localhost:5002") | |
client = mlflow.tracking.MlflowClient() | |
mlflow.set_experiment('http_metrics_test') | |
with mlflow.start_run(): | |
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42) | |
lr.fit(train_x, train_y) | |
predicted_qualities = lr.predict(test_x) | |
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities) | |
print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio)) | |
print("RMSE: %s" % rmse) | |
print("MAE: %s" % mae) | |
print("R2: %s" % r2) | |
mlflow.log_param("alpha", alpha) | |
mlflow.log_param("l1_ratio", l1_ratio) | |
mlflow.log_metric("rmse", rmse) | |
mlflow.log_metric("r2", r2) | |
mlflow.log_metric("mae", mae) | |
mlflow.sklearn.log_model(lr, "model") |
留神:
1.`mlflow.set_tracking_uri("http://localhost:5002")` 设置为方才启动的 mlflow tracking server 的地址 | |
2.`mlflow.set_experiment('http_metrics_test')` 设置试验的名字 | |
3. 装置该程序所依赖的 python 包 | |
4. 如果不是在同一个 conda 环境中,还得执行 | |
``` | |
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE | |
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY | |
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9001 | |
``` | |
便于 python 客户端上传模型文件以及模型元数据 |
间接执行 python wine.py 如果胜利,拜访 mlflow tracking server ui 下有如下
点击 2020-10-30 10:34:38,如下:
启动 mlflow 算法服务
在同一个 conda 环境中执行命令
export MLFLOW_TRACKING_URI=http://localhost:5002 | |
mlflow models serve -m runs:/e69aed0b22fb45debd115dfc09dbc75a/model -p 1234 --no-conda |
其中 e69aed0b22fb45debd115dfc09dbc75a 为 mlflow tracking server ui 中的 run id
如遇到 ModuleNotFoundError: No module named ‘sklearn’
执行 pip install scikit-learn==0.19.1
遇到 ModuleNotFoundError: No module named ‘scipy’
执行 pip install scipy
申请拜访该 model 启动的服务:
curl -X POST -H "Content-Type:application/json; format=pandas-split" --data '{"columns":["alcohol","chlorides","citric acid","density","fixed acidity","free sulfur dioxide","pH","residual sugar","sulphates","total sulfur dioxide","volatile acidity"],"data":[[12.8, 0.029, 0.48, 0.98, 6.2, 29, 3.33, 1.2, 0.39, 75, 0.66]]}' http://127.0.0.1:1234/invocations
输入 [5.455573233630147]
则表明该模型服务胜利部署
至此次要简略的 mlflow 应用就实现了,如果还有 mlflow 不反对的算法,能够参照自定义 model