关于数据挖掘:R语言随机波动模型SV马尔可夫蒙特卡罗法MCMC正则化广义矩估计和准最大似然估计上证指数收益时间序列附代码数据

全文链接:http://tecdat.cn/?p=31162

最近咱们被客户要求撰写对于SV模型的钻研报告,包含一些图形和统计输入

本文做SV模型,选取马尔可夫蒙特卡罗法(MCMC)、正则化狭义矩预计法和准最大似然预计法预计。

模仿SV模型的预计办法:

sim <- svsim(1000,mu=-9, phi = 0.97, sigma = 0.15)

print(sim)

summary(sim)

plot(sim)

绘制上证指数收益工夫序列图、散点图、自相干图与偏自相干图

咱们选取上证指数5分钟高频数据:

data=read.csv("上证指数-5min.csv",header=TRUE)
#open:开盘价  close:收盘价 vol:成交量 amount:成交额
head(data,5)  #察看数据的头5行
tail(data,5)  #察看数据的最初5行
Close.ptd<-data$close
Close.rtd<-diff(log(Close.ptd))  #指标一:logReturn
rets=diff(data$close)/data$close[-length(data$close)]  #指标二:Daily Returns,咱们抉择Daily Returns
library(tseries)
adf.test(rets)

## 绘制上证指数收益工夫序列图、散点图、自相干图与偏自相干图
Close.ptd.ts<-ts(Close.ptd,start=c(2005,1,4),freq=242)  
plot(Close.ptd.ts, type="l",main="(a) 上证指数日收盘价序列图",

acf(Close.rtd,main='',xlab='Lag',ylab='ACF',las=1)    
title(main='(b) 上证指数收益率自相干测验',cex.main=0.95)

pacf(Close.rtd,main='',xlab='Lag',ylab='PACF',las=1)               
title(main='(c) 上证指数收益率偏自相干测验',cex.main=0.95)
def.off

## Q-Q图、教训累积散布ecdf图、密度图、直方图 
qqnorm(Close.rtd,main="(a) 上证指数收益率Q-Q图",cex.main=0.95,
       xlab='实践分位数',ylab='样本分位数')            
qqline(Close.rtd)                                 
#教训累积散布ecdf图
plot(ECD,lwd = 2,main="(b) 上证指数收益率累积散布函数图",cex.main=0.95,las=1) 
xx <- unique(sort(c(seq(-3, 2, length=24), knots(ECD))))         
abline(v = knots(ECD), lty=2, col='gray70')                           
x1 <- c((-4):3)             # 设定区间范畴
lines(x1,pnorm(x1,mean(Close.rtdC[1:10]),sd(Close.rtd[1:10])))  
#密度图
plot(D, main="(c) 上证指数核密度曲线图 ",xlab="收益", ylab='密度',
     xlim = c(-7,7), ylim=c(0,0.5),cex.main=0.95)       
polygon(D, col="gray", border="black")                 
curve(dnorm,lty = 2, add = TRUE)                        

lines(x2,dnorm(x2,mean=0,sd=1))      
abline(v=0,lty = 3)                                     
legend("topright", legend=c("核密度","正态密度"),lty=c(1,2),cex=0.5)
#直方图
hist(Close.rtd[1:100],xaxt='n',main='(d) 上证指数收益率直方图',
     xlab='收益/100',ylab='密度', freq=F,cex.main=0.95,las=1)        
lines(x2,dnorm(x2,mean(Close.rtd[1:100]),sd(Close.rtd[1:100]))) 
axis(1,at=axTicks(1),labels = as.integer(axTicks(1))/100 )


点击题目查阅往期内容

【视频】随机稳定率SV模型原理和Python对标普SP500股票指数预测|数据分享

左右滑动查看更多

01

02

03

04

SV模型

{
  N <- length(logReturn)
  mu <- (1/N)*sum(logReturn)
  sqrt((1/N) * sum((logReturn - mu)^2))
}

  return=-1.5*log(h)-y^2/(2*h)-(log(h)-mu)^2/(2*sigma2)
}

马尔可夫链蒙特卡罗预计

该模型应用了Kastner和Fruhwirth-Schnatter所形容的算法。应用的R代码是:

###Markov Chain Monte Carlo

summary(mcmc)

准最大似然预计

SV模型能够用QML办法在R中用许多不同的状态空间和Kalman滤波包来预计。


  a0=c(parm[1])

  P0=matrix(parm[3]^2/(1-parm[2]^2))

  dt=matrix(parm[1]*(1-parm[2]))

  ct=matrix(-1.27)

  Tt=matrix(parm[2])

  Zt=matrix(1)

  HHt=matrix(parm[3]^2)

  GGt=matrix(pi^2/2)

  ans<-fkf(a0=sp$a0,P0=sp$P0,dt=sp$dt,ct=sp$ct,Tt=sp$Tt,Zt=sp$Zt,HHt=sp$HHt,GG

正则化狭义矩阵

在R函数中定义矩条件,而后预计参数0。

moments <- c (

    m1 = sqrt(2/pi)*exp(mu/2 + sig2h/8),

    m2 = exp(mu +  sig2h/2 ) ,

    m3 = 2*sqrt ( 2/pi ) * exp( 3*mu/2 + 9*sig2h/8 ) ,
    gmm(g = sv.moments , x =rets , t0=c(mu=-10, phi=0.9,sigmaeta= 0.2),


点击文末 “浏览原文”

获取全文残缺代码数据资料。

本文选自《R语言随机稳定模型SV:马尔可夫蒙特卡罗法MCMC、正则化狭义矩预计和准最大似然预计上证指数收益工夫序列》。

点击题目查阅往期内容

HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频稳定率
Matlab马尔可夫链蒙特卡罗法(MCMC)预计随机稳定率(SV,Stochastic Volatility) 模型
R语言隐马尔可夫模型HMM间断序列重要性重抽样CSIR预计随机稳定率模型SV剖析股票收益率工夫序列
马尔可夫Markov区制转移模型剖析基金利率
马尔可夫区制转移模型Markov regime switching
时变马尔可夫区制转换MRS自回归模型剖析经济工夫序列
马尔可夫转换模型钻研交通伤亡人数事变工夫序列预测
如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?
Matlab用BUGS马尔可夫区制转换Markov switching随机稳定率模型、序列蒙特卡罗SMC、M H采样剖析工夫序列
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机稳定率SV模型、粒子滤波、Metropolis Hasting采样工夫序列剖析
matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型剖析汽车试验数据
stata马尔可夫Markov区制转移模型剖析基金利率
PYTHON用时变马尔可夫区制转换(MRS)自回归模型剖析经济工夫序列
R语言应用马尔可夫链对营销中的渠道归因建模
matlab实现MCMC的马尔可夫转换ARMA – GARCH模型预计
R语言隐马尔可夫模型HMM辨认一直变动的股票市场条件
R语言中的隐马尔可夫HMM模型实例
用机器学习辨认一直变动的股市情况—隐马尔科夫模型(HMM)
Matlab马尔可夫链蒙特卡罗法(MCMC)预计随机稳定率(SV,Stochastic Volatility) 模型
MATLAB中的马尔可夫区制转移(Markov regime switching)模型
Matlab马尔可夫区制转换动静回归模型预计GDP增长率
R语言马尔可夫区制转移模型Markov regime switching
stata马尔可夫Markov区制转移模型剖析基金利率
R语言如何做马尔可夫转换模型markov switching model
R语言隐马尔可夫模型HMM辨认股市变动剖析报告
R语言中实现马尔可夫链蒙特卡罗MCMC模型

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理