点亮 ⭐️ Star · 照亮开源之路
GitHub:https://github.com/apache/incubator-seatunnel
目录
本文转载自 Adobee Chen 的博客 -CSDN 博客,看看是否有你感兴趣的吧!
如有出错,请多斧正。
一、启动脚本解析
二、源码解析
01 入口
02 execute()外围办法
- 其中 BaseSource、BaseTransform、BaseSink 都是接口、都实现 Plugin 接口。他们的实现类就是对应的插件类型
- execute()办法向下走,创立一个执行环境。
- 调用 plugin.prepare(env)
- 最初启动 execution.start(sources, transforms, sinks); 执行 flink 代码程序
- 最初敞开
一、启动脚本解析
在 /bin/start-seatunnel-flink.sh
#!/bin/bash
function usage() {echo "Usage: start-seatunnel-flink.sh [options]"
echo "options:"
echo "--config, -c FILE_PATH Config file"
echo "--variable, -i PROP=VALUE Variable substitution, such as -i city=beijing, or -i date=20190318"
echo "--check, -t Check config"
echo "--help, -h Show this help message"
}
if [["[email protected]" = *--help ]] || [["[email protected]" = *-h ]] || [[$# -le 1]]; then
usage
exit 0
fi
is_exist() {if [ -z $1]; then
usage
exit -1
fi
}
PARAMS=""while (("$#")); do
case "$1" in
-c|--config)
CONFIG_FILE=$2
is_exist ${CONFIG_FILE}
shift 2
;;
-i|--variable)
variable=$2
is_exist ${variable}
java_property_value="-D${variable}"
variables_substitution="${java_property_value} ${variables_substitution}"
shift 2
;;
*) # preserve positional arguments
PARAMS="$PARAMS $1"
shift
;;
esac
done
if [-z ${CONFIG_FILE} ]; then
echo "Error: The following option is required: [-c | --config]"
usage
exit -1
fi
# set positional arguments in their proper place
eval set -- "$PARAMS"
BIN_DIR="$(cd"$( dirname "${BASH_SOURCE[0]}" )"&& pwd )"
APP_DIR=$(dirname ${BIN_DIR})
CONF_DIR=${APP_DIR}/config
PLUGINS_DIR=${APP_DIR}/lib
DEFAULT_CONFIG=${CONF_DIR}/application.conf
CONFIG_FILE=${CONFIG_FILE:-$DEFAULT_CONFIG}
assemblyJarName=$(find ${PLUGINS_DIR} -name seatunnel-core-flink*.jar)
if [-f "${CONF_DIR}/seatunnel-env.sh" ]; then
source ${CONF_DIR}/seatunnel-env.sh
fi
string_trim() {echo $1 | awk '{$1=$1;print}'
}
export JVM_ARGS=$(string_trim "${variables_substitution}")
exec ${FLINK_HOME}/bin/flink run \
${PARAMS} \
-c org.apache.seatunnel.SeatunnelFlink \
${assemblyJarName} --config ${CONFIG_FILE}
其中: 启动脚本能接管的 –config –variable –check(还不反对) –help
只有不是 config、variable 参数就放到 PARAMS 参数里,最初执行 flink 执行命令,PARAMS 当作 flink 参数执行。
org.apache.seatunnel.SeatunnelFlink 这个类就是主入口
二、源码解析
01 入口
public class SeatunnelFlink {public static void main(String[] args) throws Exception {FlinkCommandArgs flinkArgs = CommandLineUtils.parseFlinkArgs(args);
Seatunnel.run(flinkArgs);
}
}
FlinkCommandArgs 中进行命令行参数解析
public static FlinkCommandArgs parseFlinkArgs(String[] args) {FlinkCommandArgs flinkCommandArgs = new FlinkCommandArgs();
JCommander.newBuilder()
.addObject(flinkCommandArgs)
.build()
.parse(args);
return flinkCommandArgs;
}
进入到 Seatunnel.run(flinkArgs);
public static FlinkCommandArgs parseFlinkArgs(String[] args) {FlinkCommandArgs flinkCommandArgs = new FlinkCommandArgs();
JCommander.newBuilder()
.addObject(flinkCommandArgs)
.build()
.parse(args);
return flinkCommandArgs;
}
进入到CommandFactory.createCommand(commandArgs)
依据不同的类型抉择 Command
咱们看的是 flinkCommand
public static extends CommandArgs> Command createCommand(T commandArgs) {switch (commandArgs.getEngineType()) {
case FLINK:
return (Command) new FlinkCommandBuilder().buildCommand((FlinkCommandArgs) commandArgs);
case SPARK:
return (Command) new SparkCommandBuilder().buildCommand((SparkCommandArgs) commandArgs);
default:
throw new RuntimeException(String.format("engine type: %s is not supported", commandArgs.getEngineType()));
}
}
进入到 buildCommand
依据是否查看 config 进入到不同的实现类
public Command buildCommand(FlinkCommandArgs commandArgs) {return commandArgs.isCheckConfig() ? new FlinkConfValidateCommand() : new FlinkTaskExecuteCommand();
}
FlinkConfValidateCommand、
FlinkTaskExecuteCommand
两个类都实现了 Command 类
并且都只有一个 execute()办法
public class FlinkConfValidateCommand implements Command
public class FlinkTaskExecuteCommand extends BaseTaskExecuteCommand<flinkcommandargs, FlinkEnvironment>
在 SeaTunnel.run(flinkArgs)进入
command.execute(commandArgs);
咱们先看 FlinkTaskExecuteCommand
类中的execute 办法
02 execute()外围办法
public void execute(FlinkCommandArgs flinkCommandArgs) {
//flink
EngineType engine = flinkCommandArgs.getEngineType();
// --config
String configFile = flinkCommandArgs.getConfigFile();
// 将 String 变成 Config 类
Config config = new ConfigBuilder<>(configFile, engine).getConfig();
// 解析执行上下文
ExecutionContext executionContext = new ExecutionContext<>(config, engine);
// 解析 sources 模块
List<basesource> sources = executionContext.getSources();</basesource
// 解析 tansform 模块
List<basetransform> transforms = executionContext.getTransforms();</basetransform
// 解析 sink 模块
List<basesink> sinks = executionContext.getSinks();</basesink
baseCheckConfig(sinks, transforms, sinks);
showAsciiLogo();
try (Execution<basesource,</basesource
BaseTransform,
BaseSink,
FlinkEnvironment> execution = new ExecutionFactory<>(executionContext).createExecution()) {
// 筹备
prepare(executionContext.getEnvironment(), sources, transforms, sinks);
// 启动
execution.start(sources, transforms, sinks);
// 敞开
close(sources, transforms, sinks);
} catch (Exception e) {throw new RuntimeException("Execute Flink task error", e);
}
}
1. 其中 BaseSource、BaseTransform、BaseSink 都是接口、都实现 Plugin 接口。他们的实现类就是对应的插件类型
如果咱们的 source、sink 是 kafka 的话那么对应的就是 source 就是 KafkaTableStream、Sink 就是 KafkaSink
2. execute()办法向下走,创立一个执行环境。
进入 ExecutionFactory 种的 createExecution()
public Execution<basesource, BaseTransform, BaseSink, ENVIRONMENT> createExecution() {</basesource
Execution execution = null;
switch (executionContext.getEngine()) {
case SPARK:
SparkEnvironment sparkEnvironment = (SparkEnvironment) executionContext.getEnvironment();
switch (executionContext.getJobMode()) {
case STREAMING:
execution = new SparkStreamingExecution(sparkEnvironment);
break;
case STRUCTURED_STREAMING:
execution = new StructuredStreamingExecution(sparkEnvironment);
break;
default:
execution = new SparkBatchExecution(sparkEnvironment);
}
break;
case FLINK:
FlinkEnvironment flinkEnvironment = (FlinkEnvironment) executionContext.getEnvironment();
switch (executionContext.getJobMode()) {
case STREAMING:
execution = new FlinkStreamExecution(flinkEnvironment);
break;
default:
execution = new FlinkBatchExecution(flinkEnvironment);
}
break;
default:
throw new IllegalArgumentException("No suitable engine");
}
LOGGER.info("current execution is [{}]", execution.getClass().getName());
return (Execution<basesource, BaseTransform, BaseSink, ENVIRONMENT>) execution;</basesource
}
进入到 FlinkStreamExecution 中,能够看到最终是创立 flink 执行环境。
private final FlinkEnvironment flinkEnvironment;
public FlinkStreamExecution(FlinkEnvironment streamEnvironment) {this.flinkEnvironment = streamEnvironment;}
3. 调用 plugin.prepare(env)
protected final void prepare(E env, List extends Plugin>... plugins) {for (List extends Plugin> pluginList : plugins) {pluginList.forEach(plugin -> plugin.prepare(env));
}
}
例如 kafka->kafka
KafkaTableStream prepare
public void prepare(FlinkEnvironment env) {topic = config.getString(TOPICS);
PropertiesUtil.setProperties(config, kafkaParams, consumerPrefix, false);
tableName = config.getString(RESULT_TABLE_NAME);
if (config.hasPath(ROWTIME_FIELD)) {rowTimeField = config.getString(ROWTIME_FIELD);
if (config.hasPath(WATERMARK_VAL)) {watermark = config.getLong(WATERMARK_VAL);
}
}
String schemaContent = config.getString(SCHEMA);
format = FormatType.from(config.getString(SOURCE_FORMAT).trim().toLowerCase());
schemaInfo = JSONObject.parse(schemaContent, Feature.OrderedField);
}
KafkaSink prepare
public void prepare(FlinkEnvironment env) {topic = config.getString("topics");
if (config.hasPath("semantic")) {semantic = config.getString("semantic");
}
String producerPrefix = "producer.";
PropertiesUtil.setProperties(config, kafkaParams, producerPrefix, false);
kafkaParams.put("key.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
kafkaParams.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
}
4. 启动 execution.start
(sources, transforms, sinks);
通过步骤 2. 曾经晓得 execution 是依据不同引擎创立不同的执行环境,kafka 是 FlinkStreamExecution。那么就在 FlinkStreamExecution 中找到 start()办法
5. 执行 flink 代码程序
其中 sorce.getDate 在 KafkaTableStream 中的 getDate 办法,sink 在 KafkaSink 中的 outputStream 办法
public void start(List sources, List transforms, List sinks) throws Exception {List<datastream> data = new ArrayList<>();</datastream
for (FlinkStreamSource source : sources) {DataStream dataStream = source.getData(flinkEnvironment);
data.add(dataStream);
registerResultTable(source, dataStream);
}
DataStream input = data.get(0);
for (FlinkStreamTransform transform : transforms) {DataStream stream = fromSourceTable(transform.getConfig()).orElse(input);
input = transform.processStream(flinkEnvironment, stream);
registerResultTable(transform, input);
transform.registerFunction(flinkEnvironment);
}
for (FlinkStreamSink sink : sinks) {DataStream stream = fromSourceTable(sink.getConfig()).orElse(input);
sink.outputStream(flinkEnvironment, stream);
}
try {LOGGER.info("Flink Execution Plan:{}", flinkEnvironment.getStreamExecutionEnvironment().getExecutionPlan());
flinkEnvironment.getStreamExecutionEnvironment().execute(flinkEnvironment.getJobName());
} catch (Exception e) {LOGGER.warn("Flink with job name [{}] execute failed", flinkEnvironment.getJobName());
throw e;
}
}
6. 最初敞开
protected final void close(List extends Plugin>... plugins) {
PluginClosedException exceptionHolder = null;
for (List extends Plugin> pluginList : plugins) {for (Plugin plugin : pluginList) {try (Plugin> closed = plugin) {// ignore} catch (Exception e) {
exceptionHolder = exceptionHolder == null ?
new PluginClosedException("below plugins closed error:") : exceptionHolder;
exceptionHolder.addSuppressed(new PluginClosedException(String.format("plugin %s closed error", plugin.getClass()), e));
}
}
}
if (exceptionHolder != null) {throw exceptionHolder;}
}
Apache SeaTunnel
来,和社区一起成长!
Apache SeaTunnel(Incubating) 是一个分布式、高性能、易扩大、用于海量数据(离线 & 实时)同步和转化的数据集成平台。
仓库地址: https://github.com/apache/incubator-seatunnel
网址:https://seatunnel.apache.org/
**Proposal:**https://cwiki.apache.org/confluence/display/INCUBATOR/SeaTunnelProposal
**Apache SeaTunnel(Incubating) 2.1.0 下载地址:**https://seatunnel.apache.org/download
衷心欢送更多人退出!
咱们置信,在 「Community Over Code」(社区大于代码)、「Open and Cooperation」(凋谢合作)、「Meritocracy」(精英治理)、以及「 多样性与共识决策」等 The Apache Way 的指引下,咱们将迎来更加多元化和容纳的社区生态,共建开源精力带来的技术提高!
咱们诚邀各位有志于让外乡开源立足寰球的搭档退出 SeaTunnel 贡献者小家庭,一起共建开源!
提交问题和倡议:https://github.com/apache/incubator-seatunnel/issues
奉献代码:https://github.com/apache/incubator-seatunnel/pulls
订阅社区开发邮件列表 : [email protected]
开发邮件列表:[email protected]
退出 Slack:https://join.slack.com/t/apacheseatunnel/shared_invite/zt-1cmonqu2q-ljomD6bY1PQ~oOzfbxxXWQ
关注 Twitter: https://twitter.com/ASFSeaTunnel
< 🐬🐬 >