背景介绍
某一天早上来到公司,接到业务同学反馈,线上某个 SQL 之前查问速度很快,从某个工夫点开始查问速度忽然变慢了,心愿 DBA 帮忙查看下。业务同学反馈的原话如下:
看到这个问题,我第一工夫询问了业务对这个表的基本操作,失去的反馈如下:
- 这个表的 SQL 语法没有产生过变动
- 这个表的表构造近期未产生变更
- 这个表是个日志表,近期只有写入 insert,没有大量 delete、update 操作
剖析过程
1、SQL 剖析
首先,咱们来看下这条 SQL(脱敏之后):
SELECT
xxx, xxx, xxx, xxx, ….
FROM log\_xxxx\_2022\_4
WHERE 1=1
AND \`l\_mid\` = ‘xxxxxxx-E527B8CD-84B-960’
AND \`l\_opertime\` < ‘2022-04-20 10:56:37’
AND \`l\_opertime\` >= ‘2022-03-20 10:56:37’
ORDER BY \`l\_opertime\` DESC LIMIT 0,20;
SQL 的语义自身比较简单,是一个单表查问,不波及简单查问:
从某一张表外面,利用 l\_mid 和 l\_opertime 这两个字段作为过滤条件,输出表外面的其余字段,并依照 l\_opertime 排序。
2、表构造剖析
这样一条简略的 SQL,如果有索引的话,应该不会呈现问题才对,咱们看下表构造:
show index from log_xxxx_2022_4;
+-----------------+------------+---------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | Clustered |
+-----------------+------------+---------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+
| log_xxxx_2022_4 | 0 | PRIMARY | 1 | l_id | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | YES |
| log_xxxx_2022_4 | 1 | l_oper | 1 | l_oper | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
| log_xxxx_2022_4 | 1 | l_channel | 1 | l_channel | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
| log_xxxx_2022_4 | 1 | l_xxxxid | 1 | l_xxxxid | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
| log_xxxx_2022_4 | 1 | l_mid | 1 | l_mid | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
| log_xxxx_2022_4 | 1 | l_user | 1 | l_user | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
| log_xxxx_2022_4 | 1 | l_opertime | 1 | l_opertime | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
| log_xxxx_2022_4 | 1 | l_xxxstatus | 1 | l_xxxstatus | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
| log_xxxx_2022_4 | 1 | index_l_submit_time | 1 | l_submit_time | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
+-----------------+------------+---------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+
9 rows in set (0.00 sec)
从上述索引构造,能够看进去,咱们的l\_mid 字段和 l\_opertime 字段,都有索引。
从索引原理上看,这个 SQL 的执行打算至多应该是一个 IndexRangeScan(索引范畴扫描)。
3、执行打算剖析
传统的 MySQL 中,应用 Explain 语句来剖析 MySQL 的执行打算。在 TiDB 中,咱们能够应用 2 种办法查看 TiDB 的执行打算:
a、Explain + SQL:这种办法不会真正执行语句,会间接返回执行打算
b、Explain Analyze + SQL:这种办法会执行 SQL 语句,并返回 SQL 的执行打算
咱们应用上述办法 b 来查看执行打算(起因是这种办法能够看到 SQL 的执行工夫),上述 SQL 的执行打算如下:
+----------------------------------+----------+----------+-----------+-----------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------+----------+------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+----------------------------------+----------+----------+-----------+-----------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------+----------+------+
| Limit_12 | 20.00 | 0 | root | | time:26.2s, loops:1 | offset:0, count:20 | N/A | N/A |
| └─IndexLookUp_28 | 20.00 | 0 | root | | time:26.2s, loops:1, index_task: {total_time: 26.1s, fetch_handle: 1.95s, build: 3.39s, wait: 20.7s}, table_task: {total_time: 2m6.3s, num: 1043, concurrency: 5} | | 167.2 MB | N/A |
| ├─IndexRangeScan_25(Build) | 20000.00 | 21180838 | cop[tikv] | table:log_xxxx_2022_4, index:l_opertime(l_opertime) | time:848.9ms, loops:20703, cop_task: {num: 23, max: 1.42s, min: 2.14ms, avg: 712.3ms, p95: 1.15s, max_proc_keys: 969873, p95_proc_keys: 960000, tot_proc: 15.1s, tot_wait: 41ms, rpc_num: 23, rpc_time: 16.4s, copr_cache_hit_ratio: 0.04}, tikv_task:{proc max:763ms, min:31ms, p80:729ms, p95:747ms, iters:20788, tasks:23}, scan_detail: {total_process_keys: 20220838, total_process_keys_size: 930158548, total_keys: 20220861, rocksdb: {delete_skipped_count: 0, key_skipped_count: 20220839, block: {cache_hit_count: 12975, read_count: 28, read_byte: 1.35 MB}}} | range:[2022-03-20 10:56:37,2022-04-20 10:56:37), keep order:true, desc, stats:pseudo | N/A | N/A |
| └─Selection_27(Probe) | 20.00 | 0 | cop[tikv] | | time:1m57.9s, loops:1043, cop_task: {num: 1441, max: 891.8ms, min: 848.6µs, avg: 91.2ms, p95: 286.5ms, max_proc_keys: 20992, p95_proc_keys: 20480, tot_proc: 1m51.3s, tot_wait: 17.1s, rpc_num: 1441, rpc_time: 2m11.3s, copr_cache_hit_ratio: 0.00}, tikv_task:{proc max:235ms, min:0s, p80:78ms, p95:98ms, iters:27477, tasks:1441}, scan_detail: {total_process_keys: 21180838, total_process_keys_size: 7841770073, total_keys: 21184733, rocksdb: {delete_skipped_count: 0, key_skipped_count: 55260873, block: {cache_hit_count: 239289, read_count: 83, read_byte: 622.7 KB}}} | eq(comment5_log.log_xxxx_2022_4.l_mid, "625F70C0-ABD4F004-E527B8CD-84B-960") | N/A | N/A |
| └─TableRowIDScan_26 | 20000.00 | 21180838 | cop[tikv] | table:log_xxxx_2022_4 | tikv_task:{proc max:231ms, min:0s, p80:76ms, p95:95ms, iters:27477, tasks:1441} | keep order:false, stats:pseudo | N/A | N/A |
+----------------------------------+----------+----------+-----------+-----------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------+----------+------+
5 rows in set (26.15 sec)
上述 SQL 的执行工夫是:26.15 sec
咱们对 TiDB 的执行打算进行剖析:
id 列:算子名称.
从图中能够看出,咱们以后的 SQL 算子蕴含:
IndexLookUp:先汇总 Build 端 TiKV 扫描上来的 RowID,再去 Probe 端上依据这些 RowID
准确地读取 TiKV 上的数据。
IndexFullScan:另一种“全表扫描”,扫的是索引数据,不是表数据。
TableRowIDScan:依据下层传递下来的 RowID 扫描表数据。时常在索引读操作后检索符合条件的行。
estRows 列:显示 TiDB 预计会解决的行数
actRows 列:显示 TiDB 算子理论输入的数据条数
预估扫描行数最多是 2w 行,然而理论的输入条数是 2000w 行。
task 列:显示算子在执行语句时的所在位置,root 代表 tidb,cop 代表 tikv
access object 列:代表被拜访的表对象和索引
execution info 列:算子的理论执行信息,蕴含执行工夫等
这部分内容能够看到每个步骤的执行工夫,然而不是特地直观,前面咱们会通过 Dashboard 页面去剖析执行工夫。
operator info 列:显示拜访表、分区、索引的其余信息
range: [2022-03-20 10:56:37,2022-04-20 10:56:37] 示意查问的 WHERE 字句 (l\_opertime = 2022-04-20 10:56:37) 被下推到了 TiKV,对应的 task 为 cop[tikv]
keep order:true 示意这个查问须要 TiKV 依照程序返回后果
stats:pseudo 它示意 estRows 显示的预估行数可能不准,TiDB 定期在后盾更新统计信息,也能够通过 Analyze table 来手动更新信息。
memory 列:算子占用的内存空间大小
disk 列:算子占用磁盘空间的大小
4、TiDB DashBoard 剖析
上述 Explain Analyze 剖析的执行打算内容,execution info 列不够直观。咱们看下 TiDB 的 Dashboard,其实也能发现一些端倪。
进入 TiDB 的 Dashboard 页面 —> 点击左侧的慢查问 —> 依照 SQL 语句(或者提炼的 SQL 指纹)进行搜寻 —> 查看 SQL 执行耗时状况,看到相似的 SQL 执行耗时状况如下:
能够看到,大部分执行耗时都在 Coprocessor 执行耗时阶段,其余阶段占用的工夫非常少。
值得注意的是,Coprocessor 累计执行耗时看起来大于 SQL 执行工夫,这个是因为 TiKV 会并行处理工作,因而累计执行耗时不是天然流逝工夫
咱们再看看 SQL 的根本信息:
从 SQL 根本信息上,也能够看到,以后 SQL 应用的统计信息是 pseudo,而 pseudo 代表统计信息不精确,就有可能导致 TiDB 基于老本的执行打算抉择谬误。
解决办法
有了上述的实践根底,问题的解决就变得简略了。
依据官网文档形容,咱们应用 Analyze table log\_xxxx\_2022\_4 来从新收集下这个表的统计信息,而后从新执行查问:
analyze table log_cmnt_2022_4;
Query OK, 0 rows affected, 1 warning (51.11 sec)
再次利用 Explain Analyze 查看 SQL 执行打算:+----------------------------------+---------+---------+-----------+-------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------+-----------+------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+----------------------------------+---------+---------+-----------+-------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------+-----------+------+
| TopN_9 | 2.15 | 0 | root | | time:977µs, loops:1 | coxxxx5_log.log_xxxx_2022_4.l_opertime:desc, offset:0, count:20 | 0 Bytes | N/A |
| └─IndexLookUp_24 | 2.15 | 0 | root | | time:939.3µs, loops:2, | | 236 Bytes | N/A |
| ├─IndexRangeScan_17(Build) | 2.15 | 0 | cop[tikv] | table:log_xxxx_2022_4, index:l_mid(l_mid) | time:822.3µs, loops:1, cop_task: {num: 1, max: 749.8µs, proc_keys: 0, tot_proc: 1ms, rpc_num: 1, rpc_time: 734.8µs, copr_cache_hit_ratio: 0.00}, tikv_task:{time:1ms, loops:1}, scan_detail: {total_process_keys: 0, total_process_keys_size: 0, total_keys: 1, rocksdb: {delete_skipped_count: 0, key_skipped_count: 0, block: {cache_hit_count: 11, read_count: 0, read_byte: 0 Bytes}}} | range:["625F70C0-ABD4F004-E527B8CD-84B-960","625F70C0-ABD4F004-E527B8CD-84B-960"], keep order:false | N/A | N/A |
| └─TopN_23(Probe) | 2.15 | 0 | cop[tikv] | | | comment5_log.log_xxxx_2022_4.l_opertime:desc, offset:0, count:20 | N/A | N/A |
| └─Selection_19 | 2.15 | 0 | cop[tikv] | | | ge(comxxxx5_log.log_xxxx_2022_4.l_opertime, 2022-03-20 10:56:37.000000), lt(coxxxxx5_log.log_xxxx_2022_4.l_opertime, 2022-04-20 10:56:37.000000) | N/A | N/A |
| └─TableRowIDScan_18 | 2.15 | 0 | cop[tikv] | table:log_xxxx_2022_4 | | keep order:false | N/A | N/A |
+----------------------------------+---------+---------+-----------+-------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------+-----------+------+
6 rows in set (0.00 sec)
从最新的 SQL 执行打算中,咱们不难发现:
1、执行打算中,预估的行数 estRows,从一开始的 2w 行到当初的 2.15 行,理论执行行数 actRows,从一开始的 2000w 行,到当初的 0 行,有了很大的一个改善。
2、SQL 的执行工夫变成了 0.00s,意味着执行工夫在 10ms 之内。
当初咱们比照下执行工夫:
统计信息收集之前:SQL 执行 26s
统计信息收集之后:SQL 执行 0.00s
一个 Analyze 操作,让整个 SQL 执行工夫,足足翻了 1000 倍还多!!!
批改之后,业务同学反馈查问速度晋升显著,监控肉眼可见:
Pseudo 状态的 SQL 如何被动排查?如何解决?
从咱们上述案例中能够发现,如果一个表的统计信息采纳了 pseudo,很可能造成查问慢的状况。因而,在理论利用中,咱们须要对应用了 pseudo 统计信息的 SQL 进行摸排,能够应用上面的办法来进行摸排:
计划 1、SQL 排查并手动 analyze
select
query, query_time, stats
from
information_schema.slow_query
where is_internal = false
and stats like '%pseudo%';
应用上述 SQL 查找到所有的应用了 pseudo 统计信息的 SQL,并对它们拜访的表,手动做一次 analyze table 操作。
上述 SQL 的输入样例如下:
+-----------------------------+-------------+---------------------------------+
| query | query_time | stats |
+-----------------------------+-------------+---------------------------------+
| select * from t1 where a=1; | 0.302558006 | t1:pseudo |
| select * from t1 where a=2; | 0.401313532 | t1:pseudo |
| select * from t1 where a>2; | 0.602011247 | t1:pseudo |
| select * from t1 where a>3; | 0.50077719 | t1:pseudo |
| select * from t1 join t2; | 0.931260518 | t1:407872303825682445,t2:pseudo |
+-----------------------------+-------------+---------------------------------+
计划 2、批改参数:pseudo-estimate-ratio
这个参数代表批改的行数 / 表的总行数的比值,超过该值的时候,零碎会认为统计信息曾经过期,就会应用 pseudo,这个值的默认值是 0.8,最小值是 0,最大值是 1。它是统计信息是否生效的判断规范。
能够将这个参数调整成 1,从而让 TiKV 执行 SQL 的时候不抉择 pseudo 统计信息。
计划 3、批改参数:tidb_enable_pseudo_for_outdated_stats
这个变量用来管制 TiDB 优化器在某一张表上的统计信息过期之后的行为,默认值是 On。
如果应用默认值 On,在某张表的统计信息过期之后,代表优化器认为以后表除了总行数之外,其余的统计信息曾经生效,所以会采纳 pseudo 统计信息;
如果应用 Off,即便一张表上的统计信息生效,也会应用以后表的统计信息,不会应用 pseudo。如果你的表更新频繁,又没有即便对表进行 analyze table,那么倡议应用 off 选项。
计划 4、TiDB Dashboard 排查
登录 TiDB 的 Dashboard,点击 TiDB—>statistics—>pseudo estimation OPS 面板即可。
如果监控中应用 Pseudo 统计信息的 SQL 过多,那么阐明咱们的统计信息存在大量生效的状况,须要对这类 SQL 拜访的表从新进行信息统计。
总结
到这里,下面的问题算是解决了,咱们也晓得了如何对应用了 Pseudo 统计信息的 SQL 进行排查了。
咱们先尝试写一些总结:
1、遇到慢查问,咱们个别须要进行一系列剖析,包含 SQL 历史运行状态理解、SQL 语义剖析、SQL 拜访的表对应的表构造剖析、执行打算剖析等等
2、TiDB 的 Dashboard 中的慢日志模块曾经帮用户整顿了相干信息,要学会借助已有的性能去排查问题。
3、问题解决后,还应该想方法从源头上杜绝问题再次发生。
其实如果更近一步去思考,既然 TiDB 自身会进行统计信息收集,那么它的收集策略又是怎么的呢???为什么它有收集统计信息的性能,咱们的表还会应用到 pseudo 统计信息呢???这些,其实都是值得思考的问题。这里我给出一点官网文档的提醒:
对于统计信息的更多细节,期待大家在实践中去摸索,去发现。:)
原作者:Asiaye 发表工夫:2022/4/26 原文链接:https://tidb.net/blog/df697598