关于深度学习:深度学习深度残差收缩网络

80次阅读

共计 12055 个字符,预计需要花费 31 分钟才能阅读完成。

本文探讨了一种新的深度学习算法——深度残差膨胀网络(Deep Residual Shrinkage Network),退出了笔者本人的了解。

1. 深度残差膨胀网络的相干根底

从名字就可能看出,深度残差膨胀网络是深度残差网络的一种改良办法。其特色是“膨胀”,在这里指的是软阈值化,而软阈值化简直是当初信号降噪算法的必备步骤。

因而,深度残差膨胀网络是一种面向强噪数据的深度学习算法,是信号处理里的经典内容和深度学习、注意力机制的又一种联合。

深度残差膨胀网络的根本模块如下图 (a) 所示,通过一个小型子网络,学习失去一组阈值,而后进行特色的软阈值化。同时,该模块还退出了恒等门路,以升高模型训练难度。深度残差膨胀网络的整体构造如下图 (b) 所示,与通常的深度残差网络是一样的。

那么为何要进行膨胀呢?膨胀有什么益处呢?本文尝试从删除冗余特色的灵便度的角度,开展了探讨。

2. 膨胀(这里指软阈值化)

不理解软阈值化的同学能够去搜一下 Soft Threshlding,在谷歌学术上会搜到这一篇:DL Donoho. De-noising by soft-thresholding[J]. IEEE transactions on information theory, 1995.

De-noising by soft-thresholding 这一篇论文,目前的援用次数是 12893 次。能够看进去,软阈值化是一种经典的办法,尤其在信号降噪方面是十分罕用的。

软阈值函数的式子如下:

其中 t 是阈值,是一个负数。从公式能够看出,软阈值化将 [-t,t] 区间内的特色置为 0,将大于 t 的特色减 t,将小于 - t 的特色加 t。

如果用图片示意软阈值函数,就如下图所示:

3. 膨胀(这里指软阈值化)与 ReLU 激活函数的比照

软阈值化在深度残差膨胀网络中是作为非线性映射,而当初深度学习最罕用的非线性映射是 ReLU 激活函数。所以上面进行了两者的比照。

3.1 独特长处

咱们首先剖析一下,膨胀(这里指软阈值化)和 ReLU 激活函数的独特长处。

首先,软阈值化和 ReLU 都能够将局部区间的特色置为 0,相当于删除局部特色 / 信息。(可了解为,后面的层将冗余特色转换到某个取值区间,而后用软阈值化或 ReLU 进行删除)

其次,软阈值化和 ReLU 的梯度都要么为 0,要么为 1,都有利于梯度的反向流传。

3.2 膨胀(这里指软阈值化)与 ReLU 的初步比照

相较于 ReLU,软阈值化可能更加灵便地设置“待删除(置为 0)”的特色取值区间。

咱们首先独立地看 ReLU,以下图为例。ReLU 将低于 0 的特色,全副删除(置为 0);大于 0 的特色,全副保留(放弃不变)。

软阈值函数呢?它将某个区间,也就是 [- 阈值,阈值] 这一区间内的特色删除(置为零);将这个区间之外的局部,包含大于阈值和小于 - 阈值的局部,保留下来(尽管朝向 0 进行了膨胀)。下图展现了阈值 t =10 的状况:

在深度残差膨胀网络中,阈值是能够通过注意力机制主动设置的。也就是说,[- 阈值,阈值]的区间,是能够依据样本本身状况、主动调整的。

3.3 膨胀(这里指软阈值化)与 ReLU 的深层比照

如果咱们把 ReLU 和之前(卷积层或者批标准化外面的)偏置 b,放在一起看呢?那么 ReLU 可能删除的特色取值空间,是能够变动的。比如说,将偏置 b 和 ReLU 作为一个整体的话,函数模式就变成了 max(x+b,0)或者 ReLU(x+b)。当偏置 b 为负数的时候,特色 x 会沿 y 轴向上平移,而后再将负特色置为 0。例如,当 b =20 的时候,如下图所示:

或者当偏置 b 为正数的时候,特色 x 会沿 y 轴向下平移,而后再将负特色置为 0。例如,当 b =-20 的时候,如下图所示:

接下来,咱们来探讨软阈值函数。将偏置 b 和软阈值化作为一个整体的话,函数模式就变成了 sign(x+b)•max(abs(x+b)-t,0)。当偏置 b 为负数的时候,首先特色 x 会沿 y 轴向上平移,而后再将零左近的特色置为 0。例如,当偏置 b =20、阈值 t =10 的时候,如下图所示:

当偏置 b 为负时,特色 x 会沿 y 轴向下平移,而后再将零左近的特色置为 0。例如,当偏置 b =-20、阈值 t =10 的时候,如下图所示:

在深度残差膨胀网络中,因为偏置 b 和阈值 t 都是能够训练失去的参数,所以当偏置 b 和阈值 t 取值适合的时候,软阈值化是能够实现与 ReLU 雷同的性能的。也就是,在现有的这些特色的 [最小值,最大值] 的范畴内(不思考无穷的状况,个别咱们采集的数据不会有无穷),将低于某个值的特色全置为 0,或者将高于某个值的特色全置为 0。例如,在下图的数据中,如果咱们将偏置 b 设置为 20,将阈值 t 也设置为 20,就将所有小于 0 的特色全副置为 0 了。因为没有小于 -40 的特色,所以“偏置 + 软阈值化”就相当于实现了 ReLU 的性能(将低于 0 的特色置为 0)。

当然,因为 [- 阈值, 阈值] 区间和偏置 b 都是可调的,也能够是这样(b=40,t=20)(是不是和“偏置 +ReLU”很类似):

然而,反过来的话,不论“偏置 +ReLU”怎么组合,都无奈实现下图中软阈值函数能够实现的性能。也就是,“偏置 +ReLU”无奈将某个区间内特色的置为 0,并且同时保留大于上界和小于下界的特色。

从这个角度看的话,当和前一层的偏置放在一起看的时候,软阈值化比 ReLU 可能更加灵便地设置“待删除特色的取值区间”。

4. 注意力机制的加持

更重要地,深度残差膨胀网络采纳了注意力机制(相似于 Squeeze-and-Excitation Network)主动设置阈值,防止了人工设置阈值的麻烦。(人工设置阈值始终是一个大麻烦,而深度残差膨胀网络用注意力机制解决了这个大麻烦)。

在注意力机制中,深度残差膨胀网络采纳了非凡的网络结构,保障了阈值不仅为负数,而且不会太大。因为如果阈值过大的话,就可能呈现下图的状况,也就是所有特色都被置为 0 了。深度残差膨胀网络的阈值,其实是(特色图的绝对值的平均值)×(0 到 1 之间的系数),很好地防止了阈值太大的状况。

同时,深度残差膨胀网络的阈值,是在注意力机制下,依据每个样本的状况,独自设置的。也就是,每个样本,都有本人的一组独特的阈值。因而,深度残差膨胀网络实用于各个样本中噪声含量不同的状况。

5. 深度残差膨胀网络只实用于强噪声的数据吗?

咱们在应用深度残差膨胀网络的时候,仿佛不须要思考数据中是否真的含有很多噪声。换言之,深度残差膨胀网络应该能够用于弱噪声的数据。

这是因为,深度残差膨胀网络中的阈值,是依据样本本身的状况,通过一个小型子网络主动取得的。如果样本所含噪声很少,那么阈值能够被主动设置得很低(靠近于 0),从而“软阈值化”就进化成了“间接相等”。在这种状况下,软阈值化,就相当于不存在了。

6. 恒等连贯升高了训练难度

相较于一般的残差网络,深度残差膨胀网络的构造较为简单,所以恒等门路是有必要存在的。

7. 论文网址

M. Zhao, S. Zhong, X. Fu, et al., Deep residual shrinkage networks for fault diagnosis, IEEE Transactions on Industrial Informatics, DOI: 10.1109/TII.2019.2943898

https://ieeexplore.ieee.org/document/8850096

https://github.com/zhao62/Deep-Residual-Shrinkage-Networks

8. Keras 示例代码

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 28 23:24:05 2019
Implemented using TensorFlow 1.0.1 and Keras 2.2.1
 
M. Zhao, S. Zhong, X. Fu, et al., Deep Residual Shrinkage Networks for Fault Diagnosis, 
IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898
@author: super_9527
"""

from __future__ import print_function
import keras
import numpy as np
from keras.datasets import mnist
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D
from keras.optimizers import Adam
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.layers.core import Lambda
K.set_learning_phase(1)

# Input image dimensions
img_rows, img_cols = 28, 28

# The data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

# Noised data
x_train = x_train.astype('float32') / 255. + 0.5*np.random.random([x_train.shape[0], img_rows, img_cols, 1])
x_test = x_test.astype('float32') / 255. + 0.5*np.random.random([x_test.shape[0], img_rows, img_cols, 1])
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)


def abs_backend(inputs):
    return K.abs(inputs)

def expand_dim_backend(inputs):
    return K.expand_dims(K.expand_dims(inputs,1),1)

def sign_backend(inputs):
    return K.sign(inputs)

def pad_backend(inputs, in_channels, out_channels):
    pad_dim = (out_channels - in_channels)//2
    inputs = K.expand_dims(inputs,-1)
    inputs = K.spatial_3d_padding(inputs, ((0,0),(0,0),(pad_dim,pad_dim)), 'channels_last')
    return K.squeeze(inputs, -1)

# Residual Shrinakge Block
def residual_shrinkage_block(incoming, nb_blocks, out_channels, downsample=False,
                             downsample_strides=2):
    
    residual = incoming
    in_channels = incoming.get_shape().as_list()[-1]
    
    for i in range(nb_blocks):
        
        identity = residual
        
        if not downsample:
            downsample_strides = 1
        
        residual = BatchNormalization()(residual)
        residual = Activation('relu')(residual)
        residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), 
                          padding='same', kernel_initializer='he_normal', 
                          kernel_regularizer=l2(1e-4))(residual)
        
        residual = BatchNormalization()(residual)
        residual = Activation('relu')(residual)
        residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', 
                          kernel_regularizer=l2(1e-4))(residual)
        
        # Calculate global means
        residual_abs = Lambda(abs_backend)(residual)
        abs_mean = GlobalAveragePooling2D()(residual_abs)
        
        # Calculate scaling coefficients
        scales = Dense(out_channels, activation=None, kernel_initializer='he_normal', 
                       kernel_regularizer=l2(1e-4))(abs_mean)
        scales = BatchNormalization()(scales)
        scales = Activation('relu')(scales)
        scales = Dense(out_channels, activation='sigmoid', kernel_regularizer=l2(1e-4))(scales)
        scales = Lambda(expand_dim_backend)(scales)
        
        # Calculate thresholds
        thres = keras.layers.multiply([abs_mean, scales])
        
        # Soft thresholding
        sub = keras.layers.subtract([residual_abs, thres])
        zeros = keras.layers.subtract([sub, sub])
        n_sub = keras.layers.maximum([sub, zeros])
        residual = keras.layers.multiply([Lambda(sign_backend)(residual), n_sub])
        
        # Downsampling using the pooL-size of (1, 1)
        if downsample_strides > 1:
            identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity)
            
        # Zero_padding to match channels
        if in_channels != out_channels:
            identity = Lambda(pad_backend, arguments={'in_channels':in_channels,'out_channels':out_channels})(identity)
        
        residual = keras.layers.add([residual, identity])
    
    return residual


# define and train a model
inputs = Input(shape=input_shape)
net = Conv2D(8, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs)
net = residual_shrinkage_block(net, 1, 8, downsample=True)
net = BatchNormalization()(net)
net = Activation('relu')(net)
net = GlobalAveragePooling2D()(net)
outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=100, epochs=5, verbose=1, validation_data=(x_test, y_test))

# get results
K.set_learning_phase(0)
DRSN_train_score = model.evaluate(x_train, y_train, batch_size=100, verbose=0)
print('Train loss:', DRSN_train_score[0])
print('Train accuracy:', DRSN_train_score[1])
DRSN_test_score = model.evaluate(x_test, y_test, batch_size=100, verbose=0)
print('Test loss:', DRSN_test_score[0])
print('Test accuracy:', DRSN_test_score[1])

9. TFLearn 程序

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 23 21:23:09 2019
Implemented using TensorFlow 1.0 and TFLearn 0.3.2
 
M. Zhao, S. Zhong, X. Fu, B. Tang, M. Pecht, Deep Residual Shrinkage Networks for Fault Diagnosis, 
IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898
 
@author: super_9527
"""
  
from __future__ import division, print_function, absolute_import
  
import tflearn
import numpy as np
import tensorflow as tf
from tflearn.layers.conv import conv_2d
  
# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
  
# Add noise
X = X + np.random.random((50000, 32, 32, 3))*0.1
testX = testX + np.random.random((10000, 32, 32, 3))*0.1
  
# Transform labels to one-hot format
Y = tflearn.data_utils.to_categorical(Y,10)
testY = tflearn.data_utils.to_categorical(testY,10)
  
def residual_shrinkage_block(incoming, nb_blocks, out_channels, downsample=False,
                   downsample_strides=2, activation='relu', batch_norm=True,
                   bias=True, weights_init='variance_scaling',
                   bias_init='zeros', regularizer='L2', weight_decay=0.0001,
                   trainable=True, restore=True, reuse=False, scope=None,
                   name="ResidualBlock"):
      
    # residual shrinkage blocks with channel-wise thresholds
  
    residual = incoming
    in_channels = incoming.get_shape().as_list()[-1]
  
    # Variable Scope fix for older TF
    try:
        vscope = tf.variable_scope(scope, default_name=name, values=[incoming],
                                   reuse=reuse)
    except Exception:
        vscope = tf.variable_op_scope([incoming], scope, name, reuse=reuse)
  
    with vscope as scope:
        name = scope.name #TODO
  
        for i in range(nb_blocks):
  
            identity = residual
  
            if not downsample:
                downsample_strides = 1
  
            if batch_norm:
                residual = tflearn.batch_normalization(residual)
            residual = tflearn.activation(residual, activation)
            residual = conv_2d(residual, out_channels, 3,
                             downsample_strides, 'same', 'linear',
                             bias, weights_init, bias_init,
                             regularizer, weight_decay, trainable,
                             restore)
  
            if batch_norm:
                residual = tflearn.batch_normalization(residual)
            residual = tflearn.activation(residual, activation)
            residual = conv_2d(residual, out_channels, 3, 1, 'same',
                             'linear', bias, weights_init,
                             bias_init, regularizer, weight_decay,
                             trainable, restore)
              
            # get thresholds and apply thresholding
            abs_mean = tf.reduce_mean(tf.reduce_mean(tf.abs(residual),axis=2,keep_dims=True),axis=1,keep_dims=True)
            scales = tflearn.fully_connected(abs_mean, out_channels//4, activation='linear',regularizer='L2',weight_decay=0.0001,weights_init='variance_scaling')
            scales = tflearn.batch_normalization(scales)
            scales = tflearn.activation(scales, 'relu')
            scales = tflearn.fully_connected(scales, out_channels, activation='linear',regularizer='L2',weight_decay=0.0001,weights_init='variance_scaling')
            scales = tf.expand_dims(tf.expand_dims(scales,axis=1),axis=1)
            thres = tf.multiply(abs_mean,tflearn.activations.sigmoid(scales))
            # soft thresholding
            residual = tf.multiply(tf.sign(residual), tf.maximum(tf.abs(residual)-thres,0))
              
  
            # Downsampling
            if downsample_strides > 1:
                identity = tflearn.avg_pool_2d(identity, 1,
                                               downsample_strides)
  
            # Projection to new dimension
            if in_channels != out_channels:
                if (out_channels - in_channels) % 2 == 0:
                    ch = (out_channels - in_channels)//2
                    identity = tf.pad(identity,
                                      [[0, 0], [0, 0], [0, 0], [ch, ch]])
                else:
                    ch = (out_channels - in_channels)//2
                    identity = tf.pad(identity,
                                      [[0, 0], [0, 0], [0, 0], [ch, ch+1]])
                in_channels = out_channels
  
            residual = residual + identity
  
    return residual
  
  
# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)
  
# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)
  
# Build a Deep Residual Shrinkage Network with 3 blocks
net = tflearn.input_data(shape=[None, 32, 32, 3],
                         data_preprocessing=img_prep,
                         data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = residual_shrinkage_block(net, 1, 16)
net = residual_shrinkage_block(net, 1, 32, downsample=True)
net = residual_shrinkage_block(net, 1, 32, downsample=True)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=20000, staircase=True)
net = tflearn.regression(net, optimizer=mom, loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, checkpoint_path='model_cifar10',
                    max_checkpoints=10, tensorboard_verbose=0,
                    clip_gradients=0.)
  
model.fit(X, Y, n_epoch=100, snapshot_epoch=False, snapshot_step=500,
          show_metric=True, batch_size=100, shuffle=True, run_id='model_cifar10')
  
training_acc = model.evaluate(X, Y)[0]
validation_acc = model.evaluate(testX, testY)[0]

正文完
 0