关于深度学习:残差网络为何有效都有哪些发展

3次阅读

共计 10227 个字符,预计需要花费 26 分钟才能阅读完成。

残差网络为何无效,都有哪些倒退?– amaze2 的答复 – 知乎 https://www.zhihu.com/questio…

高票答复曾经很分明地介绍了残差网络,上面补充一个比拟新鲜的残差网络的改良,也就是 残差膨胀网络 Residual Shrinkage Network

1. 动机(冗余信息无处不在)

在发展机器学习工作的时候,咱们的数据集中往往或多或少地蕴含着肯定的冗余信息。这些冗余信息会对深度神经网络的特色学习效果造成不利的影响。

因而,从这个角度讲的话,咱们在设计深度神经网络的时候,或者应该刻意加强深度神经网络剔除冗余信息的能力。

2. 残差膨胀网络的根本模块

如下图所示,残差膨胀网络在其根本模块中退出了一个子网络,来学习失去一组阈值,而后对残差门路进行软阈值化(即“膨胀”)。这个过程能够看成是一种非常灵活的、删除冗余信息的形式。

3. 软阈值化的劣势

(1)灵便地删除冗余信息。软阈值化可能将位于 [-τ, τ] 区间的特色置为零,将其余特色也朝着零的方向进行膨胀。如果和前一个卷积层的偏置 b 放在一起看的话,置为零的区间其实就是[-τ+b, τ+b]。在这里,τ 和 b 都是可训练的参数。在这里,软阈值化其实能够将任意区间的特色置为零,也就是删除掉,是一种非常灵活的、删除冗余信息的形式。

(2)梯度要么为零,要么为一。这个特点是和 ReLU 激活函数一样的,有利于减小梯度隐没和梯度爆照的危险。

4. 子网络与软阈值化的联合

软阈值化中的阈值设置是一个难题。在残差膨胀网络中,阈值是通过一个子网络主动取得的,不须要人工设置,防止了这个难题,而且还带来了以下长处:

(1)每个样本能够有本人独特的阈值。一个数据集中,可能有的样本冗余信息较多,有些样本冗余信息较少,那么它们的阈值应该是有所不同的。残差膨胀网络借助这个子网络,可能给各个样本赋予不同的阈值。

(2)阈值为负数,且不会太大。在软阈值化中,阈值必须是正的,而且不能太大,否则输入会全副为 0。残差膨胀网络的根本模块通过专门的设计,能满足这一条件。

5. 整体构造

残差膨胀网络的整体构造和传统残差网络是一样的,如下图所示:

6. 简略程序

将残差膨胀网络用于加噪 MNIST 图像的分类,代码如下(仅供参考):

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 28 23:24:05 2019
Implemented using TensorFlow 1.0.1 and Keras 2.2.1
 
M. Zhao, S. Zhong, X. Fu, et al., Deep Residual Shrinkage Networks for Fault Diagnosis, 
IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898
@author: super_9527
"""

from __future__ import print_function
import keras
import numpy as np
from keras.datasets import mnist
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D
from keras.optimizers import Adam
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.layers.core import Lambda
K.set_learning_phase(1)

# Input image dimensions
img_rows, img_cols = 28, 28

# The data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

# Noised data
x_train = x_train.astype('float32') / 255. + 0.5*np.random.random([x_train.shape[0], img_rows, img_cols, 1])
x_test = x_test.astype('float32') / 255. + 0.5*np.random.random([x_test.shape[0], img_rows, img_cols, 1])
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)


def abs_backend(inputs):
    return K.abs(inputs)

def expand_dim_backend(inputs):
    return K.expand_dims(K.expand_dims(inputs,1),1)

def sign_backend(inputs):
    return K.sign(inputs)

def pad_backend(inputs, in_channels, out_channels):
    pad_dim = (out_channels - in_channels)//2
    inputs = K.expand_dims(inputs,-1)
    inputs = K.spatial_3d_padding(inputs, ((0,0),(0,0),(pad_dim,pad_dim)), 'channels_last')
    return K.squeeze(inputs, -1)

# Residual Shrinakge Block
def residual_shrinkage_block(incoming, nb_blocks, out_channels, downsample=False,
                             downsample_strides=2):
    
    residual = incoming
    in_channels = incoming.get_shape().as_list()[-1]
    
    for i in range(nb_blocks):
        
        identity = residual
        
        if not downsample:
            downsample_strides = 1
        
        residual = BatchNormalization()(residual)
        residual = Activation('relu')(residual)
        residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), 
                          padding='same', kernel_initializer='he_normal', 
                          kernel_regularizer=l2(1e-4))(residual)
        
        residual = BatchNormalization()(residual)
        residual = Activation('relu')(residual)
        residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', 
                          kernel_regularizer=l2(1e-4))(residual)
        
        # Calculate global means
        residual_abs = Lambda(abs_backend)(residual)
        abs_mean = GlobalAveragePooling2D()(residual_abs)
        
        # Calculate scaling coefficients
        scales = Dense(out_channels, activation=None, kernel_initializer='he_normal', 
                       kernel_regularizer=l2(1e-4))(abs_mean)
        scales = BatchNormalization()(scales)
        scales = Activation('relu')(scales)
        scales = Dense(out_channels, activation='sigmoid', kernel_regularizer=l2(1e-4))(scales)
        scales = Lambda(expand_dim_backend)(scales)
        
        # Calculate thresholds
        thres = keras.layers.multiply([abs_mean, scales])
        
        # Soft thresholding
        sub = keras.layers.subtract([residual_abs, thres])
        zeros = keras.layers.subtract([sub, sub])
        n_sub = keras.layers.maximum([sub, zeros])
        residual = keras.layers.multiply([Lambda(sign_backend)(residual), n_sub])
        
        # Downsampling using the pooL-size of (1, 1)
        if downsample_strides > 1:
            identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity)
            
        # Zero_padding to match channels
        if in_channels != out_channels:
            identity = Lambda(pad_backend, arguments={'in_channels':in_channels,'out_channels':out_channels})(identity)
        
        residual = keras.layers.add([residual, identity])
    
    return residual


# define and train a model
inputs = Input(shape=input_shape)
net = Conv2D(8, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs)
net = residual_shrinkage_block(net, 1, 8, downsample=True)
net = BatchNormalization()(net)
net = Activation('relu')(net)
net = GlobalAveragePooling2D()(net)
outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=100, epochs=5, verbose=1, validation_data=(x_test, y_test))

# get results
K.set_learning_phase(0)
DRSN_train_score = model.evaluate(x_train, y_train, batch_size=100, verbose=0)
print('Train loss:', DRSN_train_score[0])
print('Train accuracy:', DRSN_train_score[1])
DRSN_test_score = model.evaluate(x_test, y_test, batch_size=100, verbose=0)
print('Test loss:', DRSN_test_score[0])
print('Test accuracy:', DRSN_test_score[1])

TFLearn 版代码:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 23 21:23:09 2019
Implemented using TensorFlow 1.0 and TFLearn 0.3.2
 
M. Zhao, S. Zhong, X. Fu, B. Tang, M. Pecht, Deep Residual Shrinkage Networks for Fault Diagnosis, 
IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898
 
@author: super_9527
"""
  
from __future__ import division, print_function, absolute_import
  
import tflearn
import numpy as np
import tensorflow as tf
from tflearn.layers.conv import conv_2d
  
# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
  
# Add noise
X = X + np.random.random((50000, 32, 32, 3))*0.1
testX = testX + np.random.random((10000, 32, 32, 3))*0.1
  
# Transform labels to one-hot format
Y = tflearn.data_utils.to_categorical(Y,10)
testY = tflearn.data_utils.to_categorical(testY,10)
  
def residual_shrinkage_block(incoming, nb_blocks, out_channels, downsample=False,
                   downsample_strides=2, activation='relu', batch_norm=True,
                   bias=True, weights_init='variance_scaling',
                   bias_init='zeros', regularizer='L2', weight_decay=0.0001,
                   trainable=True, restore=True, reuse=False, scope=None,
                   name="ResidualBlock"):
      
    # residual shrinkage blocks with channel-wise thresholds
  
    residual = incoming
    in_channels = incoming.get_shape().as_list()[-1]
  
    # Variable Scope fix for older TF
    try:
        vscope = tf.variable_scope(scope, default_name=name, values=[incoming],
                                   reuse=reuse)
    except Exception:
        vscope = tf.variable_op_scope([incoming], scope, name, reuse=reuse)
  
    with vscope as scope:
        name = scope.name #TODO
  
        for i in range(nb_blocks):
  
            identity = residual
  
            if not downsample:
                downsample_strides = 1
  
            if batch_norm:
                residual = tflearn.batch_normalization(residual)
            residual = tflearn.activation(residual, activation)
            residual = conv_2d(residual, out_channels, 3,
                             downsample_strides, 'same', 'linear',
                             bias, weights_init, bias_init,
                             regularizer, weight_decay, trainable,
                             restore)
  
            if batch_norm:
                residual = tflearn.batch_normalization(residual)
            residual = tflearn.activation(residual, activation)
            residual = conv_2d(residual, out_channels, 3, 1, 'same',
                             'linear', bias, weights_init,
                             bias_init, regularizer, weight_decay,
                             trainable, restore)
              
            # get thresholds and apply thresholding
            abs_mean = tf.reduce_mean(tf.reduce_mean(tf.abs(residual),axis=2,keep_dims=True),axis=1,keep_dims=True)
            scales = tflearn.fully_connected(abs_mean, out_channels//4, activation='linear',regularizer='L2',weight_decay=0.0001,weights_init='variance_scaling')
            scales = tflearn.batch_normalization(scales)
            scales = tflearn.activation(scales, 'relu')
            scales = tflearn.fully_connected(scales, out_channels, activation='linear',regularizer='L2',weight_decay=0.0001,weights_init='variance_scaling')
            scales = tf.expand_dims(tf.expand_dims(scales,axis=1),axis=1)
            thres = tf.multiply(abs_mean,tflearn.activations.sigmoid(scales))
            # soft thresholding
            residual = tf.multiply(tf.sign(residual), tf.maximum(tf.abs(residual)-thres,0))
              
  
            # Downsampling
            if downsample_strides > 1:
                identity = tflearn.avg_pool_2d(identity, 1,
                                               downsample_strides)
  
            # Projection to new dimension
            if in_channels != out_channels:
                if (out_channels - in_channels) % 2 == 0:
                    ch = (out_channels - in_channels)//2
                    identity = tf.pad(identity,
                                      [[0, 0], [0, 0], [0, 0], [ch, ch]])
                else:
                    ch = (out_channels - in_channels)//2
                    identity = tf.pad(identity,
                                      [[0, 0], [0, 0], [0, 0], [ch, ch+1]])
                in_channels = out_channels
  
            residual = residual + identity
  
    return residual
  
  
# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)
  
# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)
  
# Build a Deep Residual Shrinkage Network with 3 blocks
net = tflearn.input_data(shape=[None, 32, 32, 3],
                         data_preprocessing=img_prep,
                         data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = residual_shrinkage_block(net, 1, 16)
net = residual_shrinkage_block(net, 1, 32, downsample=True)
net = residual_shrinkage_block(net, 1, 32, downsample=True)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=20000, staircase=True)
net = tflearn.regression(net, optimizer=mom, loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, checkpoint_path='model_cifar10',
                    max_checkpoints=10, tensorboard_verbose=0,
                    clip_gradients=0.)
  
model.fit(X, Y, n_epoch=100, snapshot_epoch=False, snapshot_step=500,
          show_metric=True, batch_size=100, shuffle=True, run_id='model_cifar10')
  
training_acc = model.evaluate(X, Y)[0]
validation_acc = model.evaluate(testX, testY)[0]

Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Michael Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.

https://ieeexplore.ieee.org/document/8850096

https://github.com/zhao62/Deep-Residual-Shrinkage-Networks

正文完
 0