背景需要
最近在我的项目中有一个场景,依据前端可视化模式传入的参数构建一组 SQL 语句,利用在 Spark Streaming 利用的数据同步中。这其实是一个已有的性能,然而发现原先的代码实现发现有较重大的问题,导致该性能在有关联查问时不可用,我通过调研之后决定从新实现。
这些 SQL 由一般的 Lookup SQL 和 Spark SQL 组成,Lookup SQL 用于查问关联数据,SparkSQL 则用于输入后果,外围问题在于如何正当组织这些表的关联关系。
PS:实现代码为 Scala 语言。
参数
其中前端传入的参数为
case class UpdateTask(@BeanProperty id: Option[Long],
@BeanProperty taskName: Option[String],
@BeanProperty taskDesc: Option[String],
@BeanProperty sourceInstance: Option[String],
@BeanProperty targetInstance: Option[Long],
@BeanProperty eventInstance: Option[Long],
@BeanProperty sourceTree: Option[Seq[Long]],
@BeanProperty selectSourceTree: Option[Seq[Long]],
@BeanProperty targetTree: Option[Long],
@BeanProperty eventTable: Option[Long],
@BeanProperty tableRelation: Option[Seq[TableRelation]],
@BeanProperty filterCondition: Option[String],
@BeanProperty targetCalculateTableName: Option[String],
@BeanProperty targetCalculate: Option[Seq[TargetCalculate]],
@BeanProperty sourceTableField: Option[Seq[TableColumnInfo]],
@BeanProperty sqlType: Option[Int],
@BeanProperty classicSql: Option[String],
@BeanProperty sinkConfig: Option[String],
@BeanProperty targetPrimaryKey: Option[Seq[String]]
) extends SimpleBaseEntity
所须要用的参数为
eventTable
: 触发表-
tableRelation
: 表关联关系列表,其中TableRelation
的构造为case class TableRelation(@BeanProperty leftTableSelect: Long, @BeanProperty rightTableSelect: Long, @BeanProperty leftColumnSelect: String, @BeanProperty rightColumnSelect: String)
-
targetCalculate
: 输入后果的计算表达式,其中TargetCalculate
的构造为case class TargetCalculate(@BeanProperty columnName: String, @BeanProperty config: String)
selectSourceTree
: 所用到的源表
解决方案
当没有关联关系的时候,比较简单,不在此探讨。当有多个关联关系时,应该先查问出被关联的表数据,再查问下一级的表,以此类推,理论场景下可能个别只有一两个表关联,然而毕竟还是须要思考极其状况,原先的实现只思考了简略的关联,简单一点的关联则无奈解决,通过一段时间思考后,决定基于树这种数据结构去实现此性能。
假如传入了如下一些表关系,并且 A 表为源表(触发表):
A <-> B
A <-> C
A <-> D
B <-> E
B <-> F
E <-> G
C <-> H
C <-> I
则通过解决后,能够生成如下一个树
--> E <--> G
--> B <--|
| --> F
|
A <----> D
|
| --> H
--> C <--|
--> I
在此须要阐明,不须要思考左右程序问题,例如 A <-> B 等价于 B <-> A,在前面对此问题会有阐明。
当传入了多个雷同的表关联关系时,须要做一个聚合,因为前端的参数中,每一个关联关系只蕴含一组关联字段,所以当有多个关联字段时,就传入了多个雷同的关联关系,然而关联字段不同。
失去这个树形关系后,也同时失去了表之间的依赖关系,然而还有一个前提,每个表只能依赖一个表,假如如下关系:
--> E <--> G
--> B <--|
| --> F
|
A <----> D
|
| --> H
--> G <--|
--> I
此时,G 表既能够由 A 失去,又能够由 E 失去,假如从 A 表失去 G 表,那么从 G 表又能够失去 E 表 …… 产生了歧义,并由此产生一个了有环图。然而咱们需要中目前没有这种关联关系(因为前端配置页面中,没有标识关联的方向性,即目前可视化模式传入的关联关系都是双向,对于一组关系,既能够从 A 失去 B,也能够从 B 失去 A,也就是后面的:A <-> B 等价于 B <-> A),所以不思考这种状况,呈现时给予报错,提醒依赖关系产生了环。如果有方向性的话,咱们生成树的算法会更简略一些,间接 DFS 即可,然而对于反复呈现的表,须要做额定解决,例如给反复表起别名,保障后果集不会呈现重名字段,否则 Spark 在处理过程中会产生异样。
在失去这个依赖关系后,前面的事件就好办了,咱们从根节点开始层序遍历(也即为 BFS 广度优先遍历),逐层构建 SQL 语句,也能够采纳树的先序遍历(DFS 深度优先),只有保障子节点在父节点前面遍历即可,保障前面的 SQL 语句用到的关联参数在后面的 SQL 中曾经查问到。
在生成 SQL 的过程中,为了防止不同库表有雷同的表名或字段名,除了最初一句输入后果的 Spark SQL,后面的 SQL 查问字段均须要起一个别名,在此沿用之前旧代码的计划:应用 {字段名} AS {库名}__{表名}__{字段名}
的模式保障字段名不会反复
代码实现
数据结构类定义
有了思路之后,便开始着手实现此性能,首先定义一个树节点的 case 类:
case class TableRelationTreeNode(value: Long, // 以后节点的表 id
parentRelation: LinkRelation, // 和父节点的关联关系
childs: ListBuffer[TableRelationTreeNode] // 子节点
)
LinkRelation
形容了两个表之间的关联关系,是对前端传入的 TableRelation
聚合后的后果:
case class LinkRelation(leftTable: Long, // 左表 id
rightTable: Long, // 右表 id
linkFields: Seq[(String, String)] // 关联字段, 元组的两个参数别离为左表字段、右表字段
)
关联关系树的构建
/**
* @param parentNode 父节点
* @param remainRelations 残余关联关系
*/
def buildRelationTree(parentNode: TableRelationTreeNode, remainRelations: ListBuffer[LinkRelation]): Any = {if (remainRelations.isEmpty) return
val parentTableId = parentNode.value;
// 找出关联关系中蕴含父节点的表 id
val childRelation = remainRelations.filter(e => e.leftTable == parentTableId || e.rightTable == parentTableId)
if (childRelation.isEmpty) return
// 将关联关系中父节点的关联信息置于左侧,不便后续操作
childRelation
.map(e => if (e.leftTable == parentTableId) e else LinkRelation(e.rightTable, e.leftTable, e.linkFields.map(e => (e._2, e._1))))
.foreach{e => parentNode.childs += TableRelationTreeNode(e.rightTable, e, new ListBuffer())}
// 移除曾经应用过的关联关系
remainRelations --= childRelation
parentNode.childs foreach {buildRelationTree(_, remainRelations)}
}
SQL 语句生成的外围代码
def buildTransSQL(task: UpdateTask): Seq[String] = {
// 存储所有用到的表(namespace 为表的信息)val namespacesRef = mutable.HashMap[Long, Namespace]()
task.selectSourceTree.get.foreach(i => namespacesRef += (kv = (i, Await.result(namespaceDal.findById(i), minTimeOut).get)))
val targetTableId = task.targetTree.get
// 指标表
val targetNamespace = Await.result(namespaceDal.findById(targetTableId), minTimeOut).head
namespacesRef.put(targetTableId, targetNamespace)
val eventTableId = task.eventTable.get
// 事件表(源 / 触发表)val eventNamespace = namespacesRef(eventTableId)
// 没有计算逻辑,当做镜像同步,间接 SELECT * ...
if (task.targetCalculate.isEmpty)
return Seq.newBuilder.+=(s"spark_sql= select * from ${eventNamespace.nsTable};").result()
val transSqlList = new ListBuffer[String]
// 先将触发表的所有字段查问进去
transSqlList += s"spark_sql= select ${sourceDataDal.getSourceDataTableField(eventTableId).filter(_ != "ums_active_").map(e => {s"$e AS ${eventNamespace.nsDatabase}__${eventNamespace.nsTable}__$e"
}).mkString(",")
} from ${eventNamespace.nsTable}"
if (task.getTableRelation.nonEmpty) {val remainLinks = new ListBuffer[LinkRelation]()
// 聚合反复的表关联关系
task.getTableRelation.getOrElse(Seq.empty)
.map(e => {if (e.leftTableSelect > e.rightTableSelect) {
TableRelation(
leftTableSelect = e.rightTableSelect,
rightTableSelect = e.leftTableSelect,
leftColumnSelect = e.rightColumnSelect,
rightColumnSelect = e.leftColumnSelect
)
} else e
})
.groupBy(e => s"${e.leftTableSelect}-${e.rightTableSelect}")
.map(e => {
LinkRelation(
leftTable = e._2.head.leftTableSelect,
rightTable = e._2.head.rightTableSelect,
linkFields = e._2.map(e => (e.leftColumnSelect, e.rightColumnSelect))
)
}) foreach {remainLinks += _}
// 根结点
val rootTreeNode = TableRelationTreeNode(
eventTableId,
null,
new ListBuffer[TableRelationTreeNode]
)
// 构建关系树
buildRelationTree(rootTreeNode, remainLinks)
// 如果有残余的关系未被应用,则阐明有无奈连贯到根节点的关系,抛出异样
if (remainLinks.nonEmpty) {
throw new IllegalArgumentException(s" 游离的关联关系:${
remainLinks.map(e => {val leftNs = namespacesRef(e.leftTable)
val rightNs = namespacesRef(e.rightTable)
s"${leftNs.nsDatabase}.${leftNs.nsTable} <-> ${rightNs.nsDatabase}.${rightNs.nsTable}"
}).toString
}\n 无奈与根节点 (${eventNamespace.nsDatabase}.${eventNamespace.nsTable}) 建设关系 ")
}
val queue = new mutable.Queue[TableRelationTreeNode]
queue.enqueue(rootTreeNode)
// 广度优先遍历,逐层构建 SQL 语句,保障依赖程序
while (queue.nonEmpty) {
val len = queue.size
for (i <- 0 until len) {
val node = queue.dequeue
if (node.value != eventTableId) {
val relation = node.parentRelation
// 以后节点表
val curNs = namespacesRef(node.value)
// 父节点表
val parNs = namespacesRef(relation.leftTable)
val curTableName = s"${curNs.nsDatabase}.${curNs.nsTable}"
val fields = sourceDataDal.getSourceDataTableField(node.value)
val fieldAliasPrefix = s"${curNs.nsDatabase}__${curNs.nsTable}__"
// 构建 lookup SQL
transSqlList += s"pushdown_sql left join with ${curNs.nsSys}.${curNs.nsInstance}.${curNs.nsDatabase}=select ${fields.map(f => s"$f as $fieldAliasPrefix$f").mkString(",")
} from $curTableName where (${relation.linkFields.map(_._2.replaceAll(".*\\.", "")).mkString(",")
}) in (${relation.linkFields.map(_._1.replace(".","__")).map(e => "${" + e + "}").mkString(",")})";
}
node.childs foreach {queue.enqueue(_) }
}
}
}
// 输入最终后果集的 SparkSQL
transSqlList += s"spark_sql= select ${
task.targetCalculate.get.map { e =>
s"${e.config.replaceAll("(\\w+)\\.(\\w+)\\.(\\w+)","$1__$2__$3")} as ${e.columnName}"
}.mkString(",")
} from ${eventNamespace.nsTable} where ${if (task.filterCondition.getOrElse("") =="") "1=1" else task.filterCondition.get}"
transSqlList.toSeq
}
测试
我新建了几张测试表,并应用小程序向库中随机生成了一些数据,而后又新建了一个指标表,以此来测试该性能,过程如下
前端配置
关联关系
计算逻辑
形象出的关联关系应为:
------> customer_transaction
|
customer <---> customer_account_info <----
|
------> customer_seller_relation <-----> seller_info
后盾生成的 SQL:
spark_sql =
select
address AS adp_mock_spr_mirror__customer__address,
company AS adp_mock_spr_mirror__customer__company,
gender AS adp_mock_spr_mirror__customer__gender,
id AS adp_mock_spr_mirror__customer__id,
id_card AS adp_mock_spr_mirror__customer__id_card,
mobile AS adp_mock_spr_mirror__customer__mobile,
real_name AS adp_mock_spr_mirror__customer__real_name,
ums_id_ AS adp_mock_spr_mirror__customer__ums_id_,
ums_op_ AS adp_mock_spr_mirror__customer__ums_op_,
ums_ts_ AS adp_mock_spr_mirror__customer__ums_ts_
from
customer;
pushdown_sql
left join with tidb.spr_ods_department.adp_mock_spr_mirror =
select
account_bank as adp_mock_spr_mirror__customer_account_info__account_bank,
account_level as adp_mock_spr_mirror__customer_account_info__account_level,
account_no as adp_mock_spr_mirror__customer_account_info__account_no,
customer_id as adp_mock_spr_mirror__customer_account_info__customer_id,
entry_time as adp_mock_spr_mirror__customer_account_info__entry_time,
id as adp_mock_spr_mirror__customer_account_info__id,
loc_seller as adp_mock_spr_mirror__customer_account_info__loc_seller,
risk_level as adp_mock_spr_mirror__customer_account_info__risk_level,
risk_test_date as adp_mock_spr_mirror__customer_account_info__risk_test_date,
ums_active_ as adp_mock_spr_mirror__customer_account_info__ums_active_,
ums_id_ as adp_mock_spr_mirror__customer_account_info__ums_id_,
ums_op_ as adp_mock_spr_mirror__customer_account_info__ums_op_,
ums_ts_ as adp_mock_spr_mirror__customer_account_info__ums_ts_
from
adp_mock_spr_mirror.customer_account_info
where
(id) in ($ { adp_mock_spr_mirror__customer__id});
pushdown_sql
left join with tidb.spr_ods_department.adp_mock_spr_mirror =
select
customer_id as adp_mock_spr_mirror__customer_seller_relation__customer_id,
id as adp_mock_spr_mirror__customer_seller_relation__id,
relation_type as adp_mock_spr_mirror__customer_seller_relation__relation_type,
seller_id as adp_mock_spr_mirror__customer_seller_relation__seller_id,
ums_active_ as adp_mock_spr_mirror__customer_seller_relation__ums_active_,
ums_id_ as adp_mock_spr_mirror__customer_seller_relation__ums_id_,
ums_op_ as adp_mock_spr_mirror__customer_seller_relation__ums_op_,
ums_ts_ as adp_mock_spr_mirror__customer_seller_relation__ums_ts_,
wechat_relation as adp_mock_spr_mirror__customer_seller_relation__wechat_relation
from
adp_mock_spr_mirror.customer_seller_relation
where
(customer_id) in ($ { adp_mock_spr_mirror__customer_account_info__id}
);
pushdown_sql
left join with tidb.spr_ods_department.adp_mock_spr_mirror =
select
balance as adp_mock_spr_mirror__customer_transaction__balance,
borrow_loan as adp_mock_spr_mirror__customer_transaction__borrow_loan,
comment as adp_mock_spr_mirror__customer_transaction__comment,
customer_account_id as adp_mock_spr_mirror__customer_transaction__customer_account_id,
customer_id as adp_mock_spr_mirror__customer_transaction__customer_id,
deal_abstract_code as adp_mock_spr_mirror__customer_transaction__deal_abstract_code,
deal_account_type_code as adp_mock_spr_mirror__customer_transaction__deal_account_type_code,
deal_code as adp_mock_spr_mirror__customer_transaction__deal_code,
deal_partner_account as adp_mock_spr_mirror__customer_transaction__deal_partner_account,
deal_partner_name as adp_mock_spr_mirror__customer_transaction__deal_partner_name,
deal_partner_ogr_name as adp_mock_spr_mirror__customer_transaction__deal_partner_ogr_name,
deal_partner_org_num as adp_mock_spr_mirror__customer_transaction__deal_partner_org_num,
id as adp_mock_spr_mirror__customer_transaction__id,
subject as adp_mock_spr_mirror__customer_transaction__subject,
transaction_amount as adp_mock_spr_mirror__customer_transaction__transaction_amount,
transaction_time as adp_mock_spr_mirror__customer_transaction__transaction_time,
ums_active_ as adp_mock_spr_mirror__customer_transaction__ums_active_,
ums_id_ as adp_mock_spr_mirror__customer_transaction__ums_id_,
ums_op_ as adp_mock_spr_mirror__customer_transaction__ums_op_,
ums_ts_ as adp_mock_spr_mirror__customer_transaction__ums_ts_
from
adp_mock_spr_mirror.customer_transaction
where
(customer_id, customer_account_id) in ($ { adp_mock_spr_mirror__customer_account_info__id},
$ {adp_mock_spr_mirror__customer_account_info__account_no}
);
pushdown_sql
left join with tidb.spr_ods_department.adp_mock_spr_mirror =
select
current_bank as adp_mock_spr_mirror__seller_info__current_bank,
department_id as adp_mock_spr_mirror__seller_info__department_id,
email as adp_mock_spr_mirror__seller_info__email,
entry_time as adp_mock_spr_mirror__seller_info__entry_time,
id as adp_mock_spr_mirror__seller_info__id,
id_card as adp_mock_spr_mirror__seller_info__id_card,
leader_id as adp_mock_spr_mirror__seller_info__leader_id,
mobile as adp_mock_spr_mirror__seller_info__mobile,
name as adp_mock_spr_mirror__seller_info__name,
position as adp_mock_spr_mirror__seller_info__position,
tenant_id as adp_mock_spr_mirror__seller_info__tenant_id,
ums_active_ as adp_mock_spr_mirror__seller_info__ums_active_,
ums_id_ as adp_mock_spr_mirror__seller_info__ums_id_,
ums_op_ as adp_mock_spr_mirror__seller_info__ums_op_,
ums_ts_ as adp_mock_spr_mirror__seller_info__ums_ts_
from
adp_mock_spr_mirror.seller_info
where
(id) in ($ { adp_mock_spr_mirror__customer_seller_relation__seller_id}
);
spark_sql =
select
adp_mock_spr_mirror__customer_account_info__id as id,
adp_mock_spr_mirror__customer__real_name as name,
IF(adp_mock_spr_mirror__customer__gender = 0, "0", "1") as sex,
adp_mock_spr_mirror__seller_info__department_id as age,
adp_mock_spr_mirror__customer__mobile as phone,
adp_mock_spr_mirror__seller_info__entry_time as born,
adp_mock_spr_mirror__customer__address as address,
IF(
adp_mock_spr_mirror__customer_transaction__borrow_loan = 1,
"1",
"0"
) as married,
NOW() as create_time,
NOW() as update_time,
'P' as zodiac
from
customer
where
1 = 1;
同步后果
从 Spark 后盾日志中能够看到,数据曾经失常插入指标表。
结语
以上是树和 BFS 在理论开发场景中的一个利用,代码实现其实较为简单,重点是实现的思路,当然解决问题的办法并不是惟一的,在此问题中,也能够在构建树的过程中间接构建 SQL 语句,省去后续的 BFS 过程,然而我思考到后续可能减少的需要,还是将此处拆成了两步,不便后续在扩大,依据理论场景抉择计划即可。另外,计算逻辑中短少字段强校验,当用户输出谬误字段时在运行期间能力察觉到,思考前期再减少此性能。
有不对的中央欢送斧正,心愿本文对大家有所帮忙。