OFF 文件记录的是多面体信息,将其内容解析为 Mesh
构造后,便可基于后者为多面体网格结构突围球。
球体
用泛型的构造体定义球体:
struct Sphere<T> {
n: usize, // 维度
center: Vec<T>, // 核心
radius: T // 半径
}
而后为该构造定义 new` 办法:
impl<T> Sphere<T> {fn new(n: usize) -> Sphere<T> {Sphere{n: n, center: vec![0.0; n], radius: 0.0}
}
}
假使调用该办法,rustc 会有以下指摘:
vec![...]
的第一个参数的类型本该是T
,不是浮点型;- 为
Sphere
的radius
成员赋的值,其类型应该是T
,不是浮点型; vec![...]
的第一个参数须要实现std::Clone
Trait。
前两个指摘,是心愿咱们为 T
定义 0,因为 rustc 不晓得 T
类型的 0 值的模式。第三个指摘是心愿为 T
减少束缚。要解决这些问题,我能想出的计划是
use std::clone;
struct Sphere<T> {
n: usize,
center: Vec<T>,
radius: T
}
trait Zero {fn zero() -> Self;
}
impl Zero for f64 {fn zero() -> Self {0.0}
}
impl<T: Zero + clone::Clone> Sphere<T> {fn new(n: usize) -> Sphere<T> {Sphere{n: n, center: vec![T::zero(); n], radius: T::zero()}
}
}
基于以上代码定义的球体,可能反对以下语句:
let sphere: Sphere<f64> = Sphere::new(3);
趁热打铁,再为球体实现 Display
Trait 吧,当初曾经轻车熟路了,
use std::fmt;
impl<T: fmt::Display> fmt::Display for Sphere<T> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {let mut info = String::new();
info += "球体:";
info += format!("维度 {};", self.n).as_str();
info += format!("核心 (").as_str();
for i in 0 .. self.n - 1 {info += format!("{},", self.center[i]).as_str();}
info += format!("{});", self.center[self.n - 1]).as_str();
info += format!("半径 {}.", self.radius).as_str();
write!(f, "{}", info)
}
}
网格的核心
Mesh
实例的核心即突围球的核心。当初为 Mesh
构造减少 center
办法,用于计算 Mesh
实例的核心,以下是该过程的根本泛型框架:
impl<T: Zero + clone::Clone> Mesh<T> {fn center(&self) -> Vec<T> {let mut x = vec![T::zero(); self.n];
// 计算 self 的核心,将后果存于 x
return x;
}
}
我敢肯定,rustc 会依据具体的网格核心计算代码持续要求我为 T
减少类型束缚,而且这个过程也会让我有些焦虑。假使我毫不焦虑,而且对 rustc 有所感谢,认为它饱含圣光,指出了我的代码的疏漏,那我敢肯定,我被 rustc PUA 了。
网格的核心,能够取为网格顶点汇合的均值点:
// 计算 self 的核心,将后果存于 x
for x_i in &self.points {
for j in 0 .. self.n {x[j] += x_i[j] / self.points.len() as T;}
}
对于上述代码,rustc 认为:
- 它不知该如何进行类型
T
的除法运算; self.n
为usize
类型,它无奈应用as
转换为T
类型,因为as
只能用于根本类型的转换。
对于第一个问题,为 T
减少 std::ops::Div<Output = T>
束缚便可解决。对于第二个问题,一种可行的计划是,为 T
减少 std::convert::From<usize>
束缚,而后将 self.points.len() as T
批改为 self.points.len().into()
,以实现 self.points.len()
的类型从 usize
到 T
的转换。于是,Mesh
的 center
办法的代码变为
impl<T: Zero
+ clone::Clone
+ std::ops::Div<Output = T>
+ std::convert::From<usize>> Mesh<T> {fn center(&self) -> Vec<T> {let mut x = vec![T::zero(); self.n];
// 计算 self 的核心,将后果存于 x
for x_i in &self.points {
for j in 0 .. self.n {x[j] += x_i[j] / self.points.len().into();
}
}
return x;
}
}
然而,rustc 意犹未尽,持续认为它不晓得该怎么用 +=
解决 T
类型的值,于是我须要持续为 T
减少束缚 std::ops::AddAssign
,后果 Mesh
的 center
办法的代码变成
impl<T: Zero
+ clone::Clone
+ std::ops::Div<Output = T>
+ std::convert::From<usize>
+ std::ops::AddAssign> Mesh<T> {fn center(&self) -> Vec<T> {let mut x = vec![T::zero(); self.n];
// 计算 self 的核心,将后果存于 x
for x_i in &self.points {
for j in 0 .. self.n {x[j] += x_i[j] / self.points.len().into();
}
}
return x;
}
}
这样便高枕无忧了吗?当然不是,rustc 会持续认为 x[j] += x_i[j] / ...
里的 x_i[j]
无奈挪动,起因是它对应的类型 T
未实现 copy
Trait,因而不得不持续为 T
追加 std::marker::Copy
束缚。当初,Mesh
的 center
办法的代码变为
impl<T: Zero
+ clone::Clone
+ std::ops::Div<Output = T>
+ std::convert::From<usize>
+ std::ops::AddAssign
+ std::marker::Copy> Mesh<T> {fn center(&self) -> Vec<T> {let mut x = vec![T::zero(); self.n];
// 计算 self 的核心,将后果存于 x
for x_i in &self.points {
for j in 0 .. self.n {x[j] += x_i[j] / self.points.len().into();
}
}
return x;
}
}
而后,rustc 不再说什么,这时我才有余力看出代码里存在一处性能问题须要解决,即
for x_i in &self.points {
for j in 0 .. self.n {x[j] += x_i[j] / self.points.len().into();
}
}
须要批改为
let n: T = self.points.len().into();
for x_i in &self.points {
for j in 0 .. self.n {x[j] += x_i[j] / n;
}
}
以下代码可用于测试 Mesh
的 center
办法是否真的能算出多面体的核心:
let dim = 3;
let mut mesh: Mesh<f64> = Mesh::new(dim);
mesh.load("foo.off");
let center: Vec<f64> = mesh.center();
let mut sphere: Sphere<f64> = Sphere::new(dim);
for i in 0 .. dim {sphere.center[i] = center[i];
}
println!("{}", sphere);
然而,rustc 编译上述代码时,会很傲骄地说 f64: From<usize>
没实现,也就是说 Rust 规范库里为 f64
类型实现了一大堆的的 From<...>
,然而唯独没实现 From<usize
,亦即 Mesh
的 center
办法里的代码
let n: T = self.points.len().into();
无奈通过编译。于是,之前的一堆致力,解体于这最初一片无辜的雪花。为了挽回败局,我只好在代码里用了武当派的梯云纵,左脚踩右脚,右脚踩左脚,扶摇直上……
impl<T: Zero
+ clone::Clone
+ std::ops::Div<Output = T>
+ std::convert::From<f64>
+ std::ops::AddAssign
+ std::marker::Copy> Mesh<T> {fn center(&self) -> Vec<T> {let mut x = vec![T::zero(); self.n];
// 计算 self 的核心,将后果存于 x
let n: T = (self.points.len() as f64).into();
for x_i in &self.points {
for j in 0 .. self.n {x[j] += x_i[j] / n;
}
}
return x;
}
}
网格的半径
网格的半径是网格顶点到网格核心的最大间隔,为便于实现该过程,先定义一个泛型函数,用于计算两点间的间隔:
fn distance<T>(a: &Vec<T>, b: &Vec<T>) -> T {let na = a.len();
let nb = b.len();
assert_eq!(na, nb);
let mut d: T = T::zero();
for i in 0 .. na {let t = a[i] - b[i];
d += t * t;
}
return d.sqrt();}
通过 rustc 的一番调教,distance
函数变为
fn distance<T: Zero
+ std::ops::Sub<Output = T>
+ std::ops::Mul<Output = T>
+ std::ops::AddAssign
+ Copy>(a: &Vec<T>, b: &Vec<T>) -> T {let na = a.len();
let nb = b.len();
assert_eq!(na, nb);
let mut d: T = T::zero();
for i in 0 .. na {let t = a[i] - b[i];
d += t * t;
}
return d.sqrt();}
即便如此,该函数仍然无奈通过编译,因为 rustc 认为它无奈确定 T
类型的实例有 sqrt
办法。既然天不佑我,那就别怪我代码写得丑:
trait Sqrt<T> {fn sqrt(self) -> T;
}
fn distance<T: Zero
+ std::ops::Sub<Output = T>
+ std::ops::Mul<Output = T>
+ std::ops::AddAssign
+ Copy
+ Sqrt<T>>(a: &Vec<T>, b: &Vec<T>) -> T {let na = a.len();
let nb = b.len();
assert_eq!(na, nb);
let mut d: T = T::zero();
for i in 0 .. na {let t = a[i] - b[i];
d += t * t;
}
return d.sqrt();}
若点的坐标值是 f64
类型,只需为该类型实现 Sqrt
Trait,
impl Sqrt<f64> for f64 {fn sqrt(self) -> f64 {self.sqrt()
}
}
便可应用 distance
计算两点间隔,例如
let a: Vec<f64> = vec![0.0, 0.0, 0.0];
let b: Vec<f64> = vec![1.0, 1.0, 1.0];
println!("{}", distance(&a, &b));
后果为 1.7320508075688772
。
有了 distance
函数,便可计算网格半径:
impl <T: Zero
+ std::ops::AddAssign
+ std::marker::Copy
+ Sqrt<T>
+ std::ops::Sub<Output = T>
+ std::ops::Mul<Output = T>
+ std::cmp::PartialOrd> Mesh<T> {fn radius(&self, center: &Vec<T>) -> T {let mut r = T::zero();
for x in &self.points {let d = distance(x, center);
if r < d {r = d;}
}
return r;
}
}
要写出上述代码,天然少不了 rustc 对类型的 T
各种具体束缚的谆谆告诫……
网格的突围球
当初,将 Mesh
的 center
和 radius
办法合并为 bounding_sphere
:
impl<T: Zero
+ clone::Clone
+ std::ops::Div<Output = T>
+ std::convert::From<f64>
+ std::ops::AddAssign
+ std::marker::Copy
+ Sqrt<T>
+ std::ops::Sub<Output = T>
+ std::ops::Mul<Output = T>
+ std::cmp::PartialOrd> Mesh<T> {fn bounding_sphere(&self) -> Sphere<T> {let mut sphere: Sphere<T> = Sphere::new(self.n);
// 计算突围球核心
let n: T = (self.points.len() as f64).into();
for x_i in &self.points {
for j in 0 .. self.n {sphere.center[j] += x_i[j] / n;
}
}
// 计算突围球半径
for x in &self.points {let d = distance(x, &sphere.center);
if sphere.radius < d {sphere.radius = d;}
}
return sphere;
}
}
以下为 Mesh
的 bounding_sphere
办法的调用示例:
let dim = 3;
let mut mesh: Mesh<f64> = Mesh::new(dim);
mesh.load("foo.off");
let sphere: Sphere<f64> = mesh.bounding_sphere();
println!("{}", sphere);
Rust 泛型之我见
Rust 的泛型的最大用途是,警示我,最好别用泛型,最好别用泛型,最好别用泛型。
小结
use std::{fmt, clone, ops, convert, marker, cmp};
use std::path::Path;
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::str::FromStr;
use std::num::ParseFloatError;
use std::ops::Index;
trait Zero {fn zero() -> Self;
}
impl Zero for f64 {fn zero() -> Self {0.0}
}
trait Length {fn len(&self) -> usize;
}
impl<T> Length for Vec<T> {fn len(&self) -> usize {return self.len();
}
}
struct Mesh<T> {
n: usize, // 维度
points: Vec<Vec<T>>, // 点表
facets: Vec<Vec<usize>> // 面表
}
impl<T: FromStr<Err = ParseFloatError>> Mesh<T> {fn new(n: usize) -> Mesh<T> {return Mesh {n: n, points: Vec::new(), facets: Vec::new()};
}
fn load(&mut self, path: &str) {let path = Path::new(path);
let file = File::open(path).unwrap();
let buf = BufReader::new(file);
let mut lines_iter = buf.lines().map(|l| l.unwrap());
assert_eq!(lines_iter.next(), Some(String::from("OFF")));
let second_line = lines_iter.next().unwrap();
let mut split = second_line.split_whitespace();
let n_of_points: usize = split.next().unwrap().parse().unwrap();
let n_of_facets: usize = split.next().unwrap().parse().unwrap();
for _i in 0 .. n_of_points {let line = lines_iter.next().unwrap();
let mut p: Vec<T> = Vec::new();
for x in line.split_whitespace() {p.push(x.parse().unwrap());
}
self.points.push(p);
}
for _i in 0 .. n_of_facets {let line = lines_iter.next().unwrap();
let mut f: Vec<usize> = Vec::new();
let mut split = line.split_whitespace();
let n:usize = split.next().unwrap().parse().unwrap();
assert_eq!(n, self.n);
for x in split {f.push(x.parse().unwrap());
}
assert_eq!(n, f.len());
self.facets.push(f);
}
}
}
struct Prefix<T> {
status: bool,
body: fn(&T) -> String
}
impl<T> Prefix<T> {fn new() -> Prefix<T> {Prefix{status: false, body: |_| "".to_string()}
}
}
fn matrix_fmt<T: Length + Index<usize>>(v: &Vec<T>,
prefix: Prefix<T>) -> String
where <T as Index<usize>>::Output: fmt::Display,
<T as Index<usize>>::Output: Sized {let mut s = String::new();
for x in v {let n = x.len();
if prefix.status {s += (prefix.body)(x).as_str();}
for i in 0 .. n {
if i == n - 1 {s += format!("{}\n", x[i]).as_str();} else {s += format!("{}", x[i]).as_str();}
}
}
return s;
}
impl<T: fmt::Display> fmt::Display for Mesh<T> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {let mut info = String::new();
info += format!("OFF\n").as_str();
info += format!("{0} {1} 0\n", self.points.len(), self.facets.len()).as_str();
info += matrix_fmt(&self.points, Prefix::new()).as_str();
info += matrix_fmt(&self.facets, Prefix{status: true,
body: |x| format!("{}", x.len())}).as_str();
write!(f, "{}", info)
}
}
trait Sqrt<T> {fn sqrt(self) -> T;
}
impl Sqrt<f64> for f64 {fn sqrt(self) -> f64 {self.sqrt()
}
}
fn distance<T: Zero
+ ops::Sub<Output = T>
+ ops::Mul<Output = T>
+ ops::AddAssign
+ Copy
+ Sqrt<T>>(a: &Vec<T>, b: &Vec<T>) -> T {let na = a.len();
let nb = b.len();
assert_eq!(na, nb);
let mut d: T = T::zero();
for i in 0 .. na {let t = a[i] - b[i];
d += t * t;
}
return d.sqrt();}
struct Sphere<T> {
n: usize,
center: Vec<T>,
radius: T
}
impl<T: Zero + clone::Clone> Sphere<T> {fn new(n: usize) -> Sphere<T> {Sphere{n: n, center: vec![T::zero(); n], radius: T::zero()}
}
}
impl<T: fmt::Display> fmt::Display for Sphere<T> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {let mut info = String::new();
info += "球体:";
info += format!("维度 {};", self.n).as_str();
info += format!("核心 (").as_str();
for i in 0 .. self.n - 1 {info += format!("{},", self.center[i]).as_str();}
info += format!("{});", self.center[self.n - 1]).as_str();
info += format!("半径 {}.", self.radius).as_str();
write!(f, "{}", info)
}
}
impl<T: Zero
+ clone::Clone
+ ops::Div<Output = T>
+ convert::From<f64>
+ ops::AddAssign
+ marker::Copy
+ Sqrt<T>
+ ops::Sub<Output = T>
+ ops::Mul<Output = T>
+ cmp::PartialOrd> Mesh<T> {fn bounding_sphere(&self) -> Sphere<T> {let mut sphere: Sphere<T> = Sphere::new(self.n);
// 计算突围球核心
let n: T = (self.points.len() as f64).into();
for x_i in &self.points {
for j in 0 .. self.n {sphere.center[j] += x_i[j] / n;
}
}
// 计算突围球半径
for x in &self.points {let d = distance(x, &sphere.center);
if sphere.radius < d {sphere.radius = d;}
}
return sphere;
}
}
fn main() {
let dim = 3;
let mut mesh: Mesh<f64> = Mesh::new(dim);
mesh.load("foo.off");
let sphere: Sphere<f64> = mesh.bounding_sphere();
println!("{}", sphere);
}