从论文到代码实现 RoIPooling
RoI Pooling
失去特色图和候选框,就会将候选框投影在特色图,而后进行一次缩放失去大小一致的特色图,在 Faster RCNN 中,区域候选框用来预测对象是前景还是背景,这是 class head 要做的工作,而 regression 是学习到基于 anchor 的差分,也就是核心的偏移量和宽高的缩放。
在投影过程中候选框的尺寸和地位是相干于输出图像,而不是相干于特色图,首先需要将其进行转换到候选框在特色图上具体地位,而后在对提取候选框进行尺寸的缩放。
给定一个特色图和一组提议,返回会合的特色示意。区域提议网络被用来预测对象性和回归盒的偏差(对锚点)。这些偏移量与 anchor 拆散起来生成候选框。这些倡导通常是输出图像的大小而不是特色层的大小。因此,这些倡导需要按比例缩小到特色图层,之所以这样做,以便上游的 CNN 层能够提取特色。
咱们在原图上有一个尺寸,也就是候选框中心点的坐标以及宽度,首先咱们投影在原图上坐标点除以下采样的倍数,也就是 32 倍下采样,如果坐标无奈整除则进行取整操作。
import numpy as np
import torch
import torch.nn as nn
floattype = torch.cuda.FloatTensor
class TorchROIPool(object):
def __init__(self, output_size, scaling_factor):
#输入特色图的尺寸
self.output_size = output_size
#缩放比率
self.scaling_factor = scaling_factor
def _roi_pool(self, features):
"""
在给定的缩放提取特色图基础,返回固定大小的特色图
Args:
features (np.Array):
"""
# 特色图的通道数、高 和 宽
num_channels, h, w = features.shape
# 计算步长
w_stride = w/self.output_size
h_stride = h/self.output_size
#
res = torch.zeros((num_channels, self.output_size, self.output_size))
res_idx = torch.zeros((num_channels, self.output_size, self.output_size))
for i in range(self.output_size):
for j in range(self.output_size):
# important to round the start and end, and then conver to int
#
w_start = int(np.floor(j*w_stride))
w_end = int(np.ceil((j+1)*w_stride))
h_start = int(np.floor(i*h_stride))
h_end = int(np.ceil((i+1)*h_stride))
# limiting start and end based on feature limits
#
w_start = min(max(w_start, 0), w)
w_end = min(max(w_end, 0), w)
h_start = min(max(h_start, 0), h)
h_end = min(max(h_end, 0), h)
patch = features[:, h_start: h_end, w_start: w_end]
max_val, max_idx = torch.max(patch.reshape(num_channels, -1), dim=1)
res[:, i, j] = max_val
res_idx[:, i, j] = max_idx
return res, res_idx
def __call__(self, feature_layer, proposals):
"""Given feature layers and a list of proposals, it returns pooled
respresentations of the proposals. Proposals are scaled by scaling factor
before pooling.
Args:
feature_layer (np.Array): 特色层尺寸
proposals (list of np.Array): 列表中每一个元素 Each element of the list represents a bounding
box as (w,y,w,h)
Returns:
np.Array: proposal 数量,通道数,输入特色图高度, self.output_size
"""
batch_size, num_channels, _, _ = feature_layer.shape
# first scale proposals based on self.scaling factor
scaled_proposals = torch.zeros_like(proposals)
# the rounding by torch.ceil is important for ROI pool
scaled_proposals[:, 0] = torch.ceil(proposals[:, 0] * self.scaling_factor)
scaled_proposals[:, 1] = torch.ceil(proposals[:, 1] * self.scaling_factor)
scaled_proposals[:, 2] = torch.ceil(proposals[:, 2] * self.scaling_factor)
scaled_proposals[:, 3] = torch.ceil(proposals[:, 3] * self.scaling_factor)
res = torch.zeros((len(proposals), num_channels, self.output_size,
self.output_size))
res_idx = torch.zeros((len(proposals), num_channels, self.output_size,
self.output_size))
# 遍历候选框
for idx in range(len(proposals)):
#
proposal = scaled_proposals[idx]
# adding 1 to include the end indices from proposal
extracted_feat = feature_layer[0, :, proposal[1].to(dtype=torch.int8):proposal[3].to(dtype=torch.int8)+1, proposal[0].to(dtype=torch.int8):proposal[2].to(dtype=torch.int8)+1]
res[idx], res_idx[idx] = self._roi_pool(extracted_feat)
return res