作为向量数据库的佼佼者,Milvus 实用于各种须要借助高效和可扩大向量搜寻性能的 AI 利用。
举个例子,如果想要搭建一个负责聊天机器人数据管理流程,Milvus 必然是首选向量数据库。那么如何让这个利用程序开发变得易于治理及更好了解,那就须要借助 Towhee(https://towhee.io/)了。Towhee 是一个新兴的机器学习(ML)框架,能够简化了实现和编排简单 ML 模型的过程。
接下来我将介绍如何通过 Python 应用 Milvus + Towhee 搭建一个根底的 AI 聊天机器人。本文会重点解说如何解决、剖析非结构化数据及存储和查问向量数据。
01. 设置环境
首先,创立一个 Python 虚拟环境来运行聊天机器人。
以下是 Linux shell session(会话)。借助 Shell session 创立并激活环境,将 pip 降级到最新版本。
[egoebelbecker@ares milvus_chatbot]$ python -m venv ./chatbot_venv
[egoebelbecker@ares milvus_chatbot]$ source chatbot_venv/bin/activate
(chatbot_venv) [egoebelbecker@ares milvus_chatbot]$ pip install --upgrade pip
Requirement already satisfied: pip in ./chatbot_venv/lib64/python3.11/site-packages (22.2.2)
Collecting pip
Using cached pip-23.1.2-py3-none-any.whl (2.1 MB)
Installing collected packages: pip
Attempting uninstall: pip
Found existing installation: pip 22.2.2
Uninstalling pip-22.2.2:
Successfully uninstalled pip-22.2.2
Successfully installed pip-23.1.2
接下来,装置运行代码所需的软件包:Pandas、Jupyter、Langchain、Towhee、Unstructured、Milvus、PymMilvus、sentence_transformers 和 Gradio。
(chatbot_venv) [egoebelbecker@ares milvus_chatbot]$ pip install pandas jupyter langchain towhee unstructured milvus pymilvus sentence_transformers gradio
Collecting pandas
Obtaining dependency information for pandas from https://files.pythonhosted.org/packages/d0/28/88b81881c056376254618fad622a5e94b5126db8c61157ea1910cd1c040a/pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
Using cached pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)
Collecting jupyter
Using cached jupyter-1.0.0-py2.py3-none-any.whl (2.7 kB)
(snip)
Installing collected packages: webencodings, wcwidth, pytz, pure-eval, ptyprocess, pickleshare, json5, ipython-genutils, filetype, fastjsonschema, executing, backcall, zipp, XlsxWriter, xlrd, widgetsnbextension, websocket-client, webcolors, urllib3, uri-template, tzdata, typing-extensions, traitlets, tqdm, tornado, tinycss2, tenacity, tabulate, soupsieve, sniffio, six, send2trash, rpds-py, rfc3986-validator, rfc3986, regex, pyzmq, PyYAML, python-magic, python-json-logger, pypandoc, pygments, pycparser, psutil, prompt-toolkit, prometheus-client, platformdirs, pkginfo, pillow, pexpect, parso, pandocfilters, packaging, overrides, olefile, numpy, nest-asyncio, mypy-extensions, multidict, more-itertools, mistune, mdurl, markupsafe, markdown, lxml, jupyterlab-widgets, jupyterlab-pygments, jsonpointer, joblib, jeepney, idna, greenlet, frozenlist, fqdn, et-xmlfile, docutils, defusedxml, decorator, debugpy, click, charset-normalizer, chardet, certifi, babel, attrs, async-timeout, async-lru, yarl, typing-inspect, terminado, SQLAlchemy, rfc3339-validator, requests, referencing, qtpy, python-pptx, python-docx, python-dateutil, pydantic, pdf2image, openpyxl, numexpr, nltk, msg-parser, matplotlib-inline, marshmallow, markdown-it-py, jupyter-core, jinja2, jedi, jaraco.classes, importlib-metadata, comm, cffi, bleach, beautifulsoup4, asttokens, anyio, aiosignal, stack-data, rich, requests-toolbelt, readme-renderer, pandas, openapi-schema-pydantic, langsmith, jupyter-server-terminals, jupyter-client, jsonschema-specifications, dataclasses-json, cryptography, arrow, argon2-cffi-bindings, aiohttp, SecretStorage, pdfminer.six, langchain, jsonschema, isoduration, ipython, argon2-cffi, unstructured, nbformat, keyring, ipykernel, twine, qtconsole, nbclient, jupyter-events, jupyter-console, ipywidgets, towhee, nbconvert, jupyter-server, notebook-shim, jupyterlab-server, jupyter-lsp, jupyterlab, notebook, jupyter
Successfully installed PyYAML-6.0.1 SQLAlchemy-2.0.19 SecretStorage-3.3.3 XlsxWriter-3.1.2 aiohttp-3.8.5 aiosignal-1.3.1 anyio-3.7.1 argon2-cffi-21.3.0 argon2-cffi-bindings-21.2.0 arrow-1.2.3 asttokens-2.2.1 async-lru-2.0.4 async-timeout-4.0.2 attrs-23.1.0 babel-2.12.1 backcall-0.2.0 beautifulsoup4-4.12.2 bleach-6.0.0 certifi-2023.7.22 cffi-1.15.1 chardet-5.1.0 charset-normalizer-3.2.0 click-8.1.6 comm-0.1.3 cryptography-41.0.2 dataclasses-json-0.5.14 debugpy-1.6.7 decorator-5.1.1 defusedxml-0.7.1 docutils-0.20.1 et-xmlfile-1.1.0 executing-1.2.0 fastjsonschema-2.18.0 filetype-1.2.0 fqdn-1.5.1 frozenlist-1.4.0 greenlet-2.0.2 idna-3.4 importlib-metadata-6.8.0 ipykernel-6.25.0 ipython-8.14.0 ipython-genutils-0.2.0 ipywidgets-8.0.7 isoduration-20.11.0 jaraco.classes-3.3.0 jedi-0.19.0 jeepney-0.8.0 jinja2-3.1.2 joblib-1.3.1 json5-0.9.14 jsonpointer-2.4 jsonschema-4.18.4 jsonschema-specifications-2023.7.1 jupyter-1.0.0 jupyter-client-8.3.0 jupyter-console-6.6.3 jupyter-core-5.3.1 jupyter-events-0.7.0 jupyter-lsp-2.2.0 jupyter-server-2.7.0 jupyter-server-terminals-0.4.4 jupyterlab-4.0.3 jupyterlab-pygments-0.2.2 jupyterlab-server-2.24.0 jupyterlab-widgets-3.0.8 keyring-24.2.0 langchain-0.0.248 langsmith-0.0.15 lxml-4.9.3 markdown-3.4.4 markdown-it-py-3.0.0 markupsafe-2.1.3 marshmallow-3.20.1 matplotlib-inline-0.1.6 mdurl-0.1.2 mistune-3.0.1 more-itertools-10.0.0 msg-parser-1.2.0 multidict-6.0.4 mypy-extensions-1.0.0 nbclient-0.8.0 nbconvert-7.7.3 nbformat-5.9.2 nest-asyncio-1.5.7 nltk-3.8.1 notebook-7.0.1 notebook-shim-0.2.3 numexpr-2.8.4 numpy-1.25.2 olefile-0.46 openapi-schema-pydantic-1.2.4 openpyxl-3.1.2 overrides-7.3.1 packaging-23.1 pandas-2.0.3 pandocfilters-1.5.0 parso-0.8.3 pdf2image-1.16.3 pdfminer.six-20221105 pexpect-4.8.0 pickleshare-0.7.5 pillow-10.0.0 pkginfo-1.9.6 platformdirs-3.10.0 prometheus-client-0.17.1 prompt-toolkit-3.0.39 psutil-5.9.5 ptyprocess-0.7.0 pure-eval-0.2.2 pycparser-2.21 pydantic-1.10.12 pygments-2.15.1 pypandoc-1.11 python-dateutil-2.8.2 python-docx-0.8.11 python-json-logger-2.0.7 python-magic-0.4.27 python-pptx-0.6.21 pytz-2023.3 pyzmq-25.1.0 qtconsole-5.4.3 qtpy-2.3.1 readme-renderer-40.0 referencing-0.30.0 regex-2023.6.3 requests-2.31.0 requests-toolbelt-1.0.0 rfc3339-validator-0.1.4 rfc3986-2.0.0 rfc3986-validator-0.1.1 rich-13.5.1 rpds-py-0.9.2 send2trash-1.8.2 six-1.16.0 sniffio-1.3.0 soupsieve-2.4.1 stack-data-0.6.2 tabulate-0.9.0 tenacity-8.2.2 terminado-0.17.1 tinycss2-1.2.1 tornado-6.3.2 towhee-1.1.1 tqdm-4.65.0 traitlets-5.9.0 twine-4.0.2 typing-extensions-4.7.1 typing-inspect-0.9.0 tzdata-2023.3 unstructured-0.8.7 uri-template-1.3.0 urllib3-2.0.4 wcwidth-0.2.6 webcolors-1.13 webencodings-0.5.1 websocket-client-1.6.1 widgetsnbextension-4.0.8 xlrd-2.0.1 yarl-1.9.2 zipp-3.16.2
(chatbot_venv) [egoebelbecker@ares milvus_chatbot]$
拜访链接 https://gist.github.com/egoebelbecker/07059b88a1c4daa96ec07937f8ca77b3 获取涵盖本教程所有代码的 Jupyter Notebook。下载 Notebook,启动 Jupyter 并加载 Notebook。
chatbot_venv) [egoebelbecker@ares milvus_chatbot]$ jupyter notebook milvus_chatbot.ipynb
[I 2023-07-31 11:29:01.748 ServerApp] Package notebook took 0.0000s to import
[I 2023-07-31 11:29:01.759 ServerApp] Package jupyter_lsp took 0.0108s to import
[W 2023-07-31 11:29:01.759 ServerApp] A `_jupyter_server_extension_points` function was not found in jupyter_lsp. Instead, a `_jupyter_server_extension_paths` function was found and will be used for now. This function name will be deprecated in future releases of Jupyter Server.
[I 2023-07-31 11:29:01.764 ServerApp] Package jupyter_server_terminals took 0.0045s to import
[I 2023-07-31 11:29:01.765 ServerApp] Package jupyterlab took 0.0000s to import
[I 2023-07-31 11:29:02.124 ServerApp] Package notebook_shim took 0.0000s to import
02. 搭建聊天机器人
所有准备就绪后,就能够搭建聊天机器人了。
文档存储
机器人须要存储文档块以及应用 Towhee 提取出的文档块向量。在这个步骤中,咱们须要用到 Milvus。
装置轻量版 Milvus Lite,应用以下命令运行 Milvus 服务器:
(chatbot_venv) [egoebelbecker@ares milvus_chatbot]$ milvus-server
__ _________ _ ____ ______
/ |/ / _/ /| | / / / / / __/
/ /|_/ // // /_| |/ / /_/ /\ \
/_/ /_/___/____/___/\____/___/ {Lite}
Welcome to use Milvus!
Version: v2.2.12-lite
Process: 139309
Started: 2023-07-31 12:43:43
Config: /home/egoebelbecker/.milvus.io/milvus-server/2.2.12/configs/milvus.yaml
Logs: /home/egoebelbecker/.milvus.io/milvus-server/2.2.12/logs
Ctrl+C to exit …
或者,运行 Notebook 中的代码:
from milvus import default_server
# 启动 Milvus 服务
default_server.start()
# 进行 Milvus 服务
default_server.stop()
设置利用变量并获取 OpenAI API 密钥
接下来,设置变量并清理旧的 SQLite 文件,咱们将用 SQLite 存储聊天历史记录。
- MILVUS_URI – Milvus 服务器连贯信息,解析为主机和端口。
- MILVUS_HOST – Milvus 运行的主机。
- MILVUS_PORT – 服务器监听的端口。
- DROP_EXIST – 在启动时删除现有的 Milvus 汇合。
- EMBED_MODEL – 用于生成 embedding 向量的 sentence_transformers 模型
- COLLECTION_NAME – 用于存储向量数据的 Milvus collection 名称
- DIM – 模型生成的文本向量维度
- OPENAI_API_KEY – 大语言模型(LLM)API 的密钥
import getpass
import os
MILVUS_URI = 'http://localhost:19530'
[MILVUS_HOST, MILVUS_PORT] = MILVUS_URI.split('://')[1].split(':')
DROP_EXIST = True
EMBED_MODEL = 'all-mpnet-base-v2'
COLLECTION_NAME = 'chatbot_demo'
DIM = 768
OPENAI_API_KEY = getpass.getpass('Enter your OpenAI API key:')
if os.path.exists('./sqlite.db'):
os.remove('./sqlite.db')
运行上述代码定义变量并输出 OpenAI API 密钥。
示例流水线(pipeline)
接下来,须要下载数据并存储在 Milvus 中。不过在此之前,先学习一下如何应用 pipeline 解决非结构化数据。
我会用 Towhee 官网主页作为文档起源的示例来进行演示,大家也能够尝试其余不同文档网站,理解 pipeline 如何解决不同的数据集。
以下代码应用 Towhee pipeline:
- input – 创立新 pipeline,传入源数据。
- map – 应用 ops.text_loader() 解析 URL 并将其映射为 ‘doc’。
- flat_map – 应用 ops.text_splitter() 将文档拆分成多个片段,以便后续存储。
- output – 抉择数据输入,准备就绪能够应用。
将此 pipeline 传入 DataCollection 察看其工作原理。
from towhee import pipe, ops, DataCollectionpipe_load = (
from towhee import pipe, ops, DataCollection
pipe_load = (pipe.input('source')
.map('source', 'doc', ops.text_loader())
.flat_map('doc', 'doc_chunks', ops.text_splitter(chunk_size=300))
.output('source', 'doc_chunks')
)
DataCollection(pipe_load('https://towhee.io')).show()
以下为输入:
示例 Embedding pipeline
接着,参考以下示例 embedding pipeline 将这些文档块转化为向量。pipeline 通过 map() 在每个文档块上运行 ops.sentence_embedding.sbert()。在示例中,咱们传入了 1 个文本块。
pipe_embed = (pipe.input('doc_chunk')
.map('doc_chunk', 'vec', ops.sentence_embedding.sbert(model_name=EMBED_MODEL))
.map('vec', 'vec', ops.np_normalize())
.output('doc_chunk', 'vec')
)
text = '''SOTA Models
We provide 700+ pre-trained embedding models spanning 5 fields (CV, NLP, Multimodal, Audio, Medical), 15 tasks, and 140+ model architectures.
These include BERT, CLIP, ViT, SwinTransformer, data2vec, etc.
'''
DataCollection(pipe_embed(text)).show()
运行此代码查看这个 pipeline 如何将单个文档片段转换成向量。
设置 Milvus
创立 1 个 Collection 来存储数据。
以下代码中,咱们应用 MILVUS_HOST 和 MILVUS_PORT 连贯至 Milvus,删除所有现有 Collection,并定义了 create_collection() 函数以创立 1 个全新的 Collection。
新 Collection 的 Schema 如下所示:
- id – 标识符,数据类型为整数。
- embedding – 向量,数据类型为浮点向量。
- text – 向量对应的文档块文本,数据类型为字符串。
from pymilvus import (
connections, utility, Collection,
CollectionSchema, FieldSchema, DataType
)
def create_collection(collection_name):
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
has_collection = utility.has_collection(collection_name)
if has_collection:
collection = Collection(collection_name)
if DROP_EXIST:
collection.drop()
else:
return collection
# 创立 collection
fields = [FieldSchema(name='id', dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, dim=DIM),
FieldSchema(name='text', dtype=DataType.VARCHAR, max_length=500)
]
schema = CollectionSchema(
fields=fields,
description="Towhee demo",
enable_dynamic_field=True
)
collection = Collection(name=collection_name, schema=schema)
index_params = {
'metric_type': 'IP',
'index_type': 'IVF_FLAT',
'params': {'nlist': 1024}
}
collection.create_index(
field_name='embedding',
index_params=index_params
)
return collection
插入 Pipeline
当初,将文本向量插入 Milvus。
以下代码能够:
- 创立新 Collection
- 加载新文档数据
- 将新文档切块
- 应用 EMBED_MODEL 为文本快生成向量
- 将文本块向量和对应文本块数据插入到 Milvus
load_data = (pipe.input('collection_name', 'source')
.map('collection_name', 'collection', create_collection)
.map('source', 'doc', ops.text_loader())
.flat_map('doc', 'doc_chunk', ops.text_splitter(chunk_size=300))
.map('doc_chunk', 'vec', ops.sentence_embedding.sbert(model_name=EMBED_MODEL))
.map('vec', 'vec', ops.np_normalize())
.map(('collection_name', 'vec', 'doc_chunk'), 'mr',
ops.ann_insert.osschat_milvus(host=MILVUS_HOST, port=MILVUS_PORT))
.output('mr')
)
通过以下代码,咱们将 Frodo Baggins 的百科页面内容转化为文本快向量并插入到 Milvus 中。
project_name = 'towhee_demo'
data_source = 'https://en.wikipedia.org/wiki/Frodo_Baggins'
mr = load_data(COLLECTION_NAME, data_source)
print('Doc chunks inserted:', len(mr.to_list()))
最终一共插入 408 个本文块向量:
2023-07-31 16:50:53,369 - 139993906521792 - node.py-node:167 - INFO: Begin to run Node-_input2023-07-31 16:50:53,371 - 139993906521792 - node.py-node:167 - INFO: Begin to run Node-create_collection-02023-07-31 16:50:53,373 - 139993881343680 - node.py-node:167 - INFO: Begin to run Node-text-loader-12023-07-31 16:50:53,374 - 139993898129088 - node.py-node:167 - INFO: Begin to run Node-text-splitter-22023-07-31 16:50:53,376 - 139993872950976 - node.py-node:167 - INFO: Begin to run Node-sentence-embedding/sbert-32023-07-31 16:50:53,377 - 139993385268928 - node.py-node:167 - INFO: Begin to run Node-np-normalize-42023-07-31 16:50:53,378 - 139993376876224 - node.py-node:167 - INFO: Begin to run Node-ann-insert/osschat-milvus-52023-07-31 16:50:53,379 - 139993368483520 - node.py-node:167 - INFO: Begin to run Node-_output
(snip)
Categories:
2023-07-31 18:07:53,530 - 140552729257664 - logger.py-logger:14 - DETAIL: Skipping sentence because does not exceed 5 word tokens
Categories
2023-07-31 18:07:53,532 - 140552729257664 - logger.py-logger:14 - DETAIL: Skipping sentence because does not exceed 3 word tokens
Hidden categories
2023-07-31 18:07:53,533 - 140552729257664 - logger.py-logger:14 - DETAIL: Skipping sentence because does not exceed 3 word tokens
Hidden categories
2023-07-31 18:07:53,533 - 140552729257664 - logger.py-logger:14 - DETAIL: Not narrative. Text does not contain a verb:
Hidden categories:
2023-07-31 18:07:53,534 - 140552729257664 - logger.py-logger:14 - DETAIL: Skipping sentence because does not exceed 5 word tokens
Hidden categories
Doc chunks inserted: 408
03. 检索知识库
Milvus 中曾经存储了文本块向量,当初能够进行向量查问了。
以下函数创立了 1 个查问 pipeline。留神,这是本教程中最为要害的一个步骤!
ops.ann_search.osschat_milvus(host=MILVUS_HOST, port=MILVUS_PORT,
**{'metric_type': 'IP', 'limit': 3, 'output_fields': ['text']}))
OSSChat_milvus(https://towhee.io/ann-search/osschat-milvus)查问 Milvus 向量数据库中与查问文本相匹配的文档片段。
以下为整个查问 pipeline 代码:
pipe_search = (pipe.input('collection_name', 'query')
.map('query', 'query_vec', ops.sentence_embedding.sbert(model_name=EMBED_MODEL))
.map('query_vec', 'query_vec', ops.np_normalize())
.map(('collection_name', 'query_vec'), 'search_res',
ops.ann_search.osschat_milvus(host=MILVUS_HOST, port=MILVUS_PORT,
**{'metric_type': 'IP', 'limit': 3, 'output_fields': ['text']}))
.flat_map('search_res', ('id', 'score', 'text'), lambda x: (x[0], x[1], x[2]))
.output('query', 'text', 'score')
)
当初,能够尝试查问以下问题:
query = 'Who is Frodo Baggins?'
DataCollection(pipe_search(project_name, query)).show()
不难发现,咱们应用的模型返还了 3 个相匹配的后果(注:后面 ann_search.osschat_milvus 中指定了 limit=3):
04. 退出大语言模型(LLM)
接着,须要在聊天机器人中退出 LLM。这样,用户就能够和聊天机器人发展对话了。本示例中,咱们将应用 OpenAI ChatGPT 背地的模型服务:GPT-3.5。
聊天记录
为了使 LLM 答复更精确,咱们须要存储用户和机器人的聊天记录,并在查问时调用这些记录,能够用 SQLite 实现聊天记录的治理。
以下函数用于调取聊天记录:
<section id="nice" data-tool="mdnice 编辑器" data-website="https://www.mdnice.com" style="font-size: 16px; padding: 0 10px; line-height: 1.6; word-spacing: 0px; letter-spacing: 0px; word-break: break-word; word-wrap: break-word; text-align: left; color: #3E3E3E; font-family: Optima-Regular, Optima, PingFangSC-light, PingFangTC-light,'PingFang SC', Cambria, Cochin, Georgia, Times,'Times New Roman', serif;"><pre class="custom" data-tool="mdnice 编辑器" style="margin-top: 10px; margin-bottom: 10px; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px; text-align: left;"><span style="display: block; background: url(https://files.mdnice.com/user/3441/876cad08-0422-409d-bb5a-08afec5da8ee.svg); height: 30px; width: 100%; background-size: 40px; background-repeat: no-repeat; background-color: #282c34; margin-bottom: -7px; border-radius: 5px; background-position: 10px 10px;"></span><code class="hljs" style="overflow-x: auto; padding: 16px; color: #abb2bf; display: -webkit-box; font-family: Operator Mono, Consolas, Monaco, Menlo, monospace; font-size: 12px; -webkit-overflow-scrolling: touch; padding-top: 15px; background: #282c34; border-radius: 5px;">query = 'Who is Frodo Baggins?'
DataCollection(pipe_search(project_name, query)).show()
</code></pre>
</section>
以下函数用户存储聊天记录:
pipe_add_history = (pipe.input('collection_name', 'session', 'question', 'answer')
.map(('collection_name', 'session', 'question', 'answer'), 'history', ops.chat_message_histories.sql(method='add'))
.output('history')
)
LLM 查问 Pipeline
搭建一个 Pipeline 将查问传递至 LLM 中。
这个 LLM 查问 Pipeline 能够:
- 依据用户查问问题搜寻 Milvus 向量数据库
- 调取并存储以后聊天记录
- 将用户查问问题、Milvus 搜寻后果、聊天记录三者一并传入 ChatGPT
- 记录本轮问题和答案
- 返回最终答复
chat = (pipe.input('collection_name', 'query', 'session')
.map('query', 'query_vec', ops.sentence_embedding.sbert(model_name=EMBED_MODEL))
.map('query_vec', 'query_vec', ops.np_normalize())
.map(('collection_name', 'query_vec'), 'search_res',
ops.ann_search.osschat_milvus(host=MILVUS_HOST,
port=MILVUS_PORT,
**{'metric_type': 'IP', 'limit': 3, 'output_fields': ['text']}))
.map('search_res', 'knowledge', lambda y: [x[2] for x in y])
.map(('collection_name', 'session'), 'history', ops.chat_message_histories.sql(method='get'))
.map(('query', 'knowledge', 'history'), 'messages', ops.prompt.question_answer())
.map('messages', 'answer', ops.LLM.OpenAI(api_key=OPENAI_API_KEY,
model_name='gpt-3.5-turbo',
temperature=0.8))
.map(('collection_name', 'session', 'query', 'answer'), 'new_history', ops.chat_message_histories.sql(method='add'))
.output('query', 'history', 'answer',)
)
在连贯至图形用户界面(GUI)前,咱们须要先测试以下这个 Pipeline。
new_query = 'Where did Frodo take the ring?'
DataCollection(chat(COLLECTION_NAME, new_query, session_id)).show()
以下为输入和后果:
祝贺你!这个 Pipeline 搭建胜利了!接下来能够搭建 Gradio 界面吧!
Gradio 界面
首先,须要一些函数通过 UUID 来创立 session ID,承受并响应界面上的用户查问。
import uuidimport io
def create_session_id():
uid = str(uuid.uuid4())
suid = ''.join(uid.split('-'))
return 'sess_' + suid
def respond(session, query):
res = chat(COLLECTION_NAME, query, session).get_dict()
answer = res['answer']
response = res['history']
response.append((query, answer))
return response
接着,Gradio 界面通过这些函数搭建聊天机器人。Blocks API 用于搭建聊天机器人界面。发送信息(Send Message)按钮通过响应函数将申请发送至 ChatGPT。
import gradio as gr
with gr.Blocks() as demo:
session_id = gr.State(create_session_id)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown('''## Chat''')
conversation = gr.Chatbot(label='conversation').style(height=300)
question = gr.Textbox(label='question', value=None)
send_btn = gr.Button('Send Message')
send_btn.click(
fn=respond,
inputs=[
session_id,
question
],
outputs=conversation,
)
demo.launch(server_name='127.0.0.1', server_port=8902)
界面如下所示:
至此,一个联合向量检索和 LLM 生成的智能聊天机器人就搭建实现啦!
05. 总结
回顾一下,咱们首先创立了 Towhee pipeline 来解决非结构化数据,并将其转化为向量并存储在 Milvus 向量数据库中。而后,搭建了一个查问 Pipeline,在聊天机器人中接入 LLM。最终,一个根底的聊天机器人界面便搭建实现。
简言之,Milvus 高度可扩大,提供高效的向量相似性搜寻性能,可能帮忙开发者轻松搭建聊天机器人、举荐零碎、图片或文本辨认等 ML 和 AI 利用。期待大家用 Milvus 搭建更出更棒的利用!
- 本文作者
Eric Goebelbecker 现居纽约,有着 25 年的金融市场从业教训。他负责为金融资讯替换(FIX)协定网络和市场数据分析系统搭建基础设施。Eric 热衷于摸索各种晋升团队工作效率的工具和软件。
- 如果在应用 Milvus 或 Zilliz 产品有任何问题,可增加小助手微信“zilliz-tech”退出交换群。
- 欢送关注微信公众号“Zilliz”,理解最新资讯。
本文由 mdnice 多平台公布