关于人工智能:Pytorch-autograd与逻辑回归的实现

38次阅读

共计 5767 个字符,预计需要花费 15 分钟才能阅读完成。

文章和代码曾经归档至【Github 仓库:https://github.com/timerring/dive-into-AI】或者公众号【AIShareLab】回复 pytorch 教程 也可获取。

autograd 主动求导零碎

torch.autograd

autograd

torch.autograd.backward

torch.autograd.backward (tensors, grad_tensors=None,retain_graph=None,create_graph=False)

性能:主动求取梯度

  • tensors : 用于求导的张量,如 loss
  • retain\_graph : 保留计算图
  • create\_graph:创立导数计算图,用于高阶求导
  • grad\_tensors:多梯度权重 (用于设置权重)

留神:张量类中的 backward 办法,实质上是调用的 torch.autogtad.backward。

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    y.backward(retain_graph=True) # 能够保留梯度图
    # print(w.grad)
    y.backward() # 能够求两次梯度 

应用 grad\_tensors 能够设置每个梯度的权重。

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)     # retain_grad()
    b = torch.add(w, 1)

    y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)
    y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2

    loss = torch.cat([y0, y1], dim=0)       # [y0, y1]
    grad_tensors = torch.tensor([1., 2.])

    loss.backward(gradient=grad_tensors) # gradient 设置权重

    print(w.grad)
tensor([9.])

这个后果是由每一部分的梯度乘它对应局部的权重失去的。

torch.autograd.grad

torch.autograd.grad (outputs, inputs, grad_outputs=None,retain_graph= None, create_graph=False)

性能:求取梯度

  • outputs : 用于求导的张量,如 loss
  • inputs : 须要梯度的 张量
  • create\_graph: 创立导数计算图,用于高阶求导
  • retain\_graph : 保留计算图
  • grad\_outputs:多梯度权重
    x = torch.tensor([3.], requires_grad=True)
    y = torch.pow(x, 2)     # y = x**2

# grad_1 = dy/dx
    grad_1 = torch.autograd.grad(y, x, create_graph=True)
    print(grad_1)

# grad_2 = d(dy/dx)/dx
    grad_2 = torch.autograd.grad(grad_1[0], x, create_graph=True) 
    print(grad_2) # 求二阶导

    grad_3 = torch.autograd.grad(grad_2[0], x)
    print(grad_3)
    print(type(grad_3))
(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.], grad_fn=<MulBackward0>),)
(tensor([0.]),)
<class 'tuple'>

留神:因为是元组类型,因而再次应用求导的时候须要拜访外面的内容。

1. 梯度不主动清零

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    for i in range(4):
        a = torch.add(w, x)
        b = torch.add(w, 1)
        y = torch.mul(a, b)

        y.backward()
        print(w.grad)
        # If not zeroed, the errors from each backpropagation add up.
        # This underscore indicates in-situ operation
        grad.zero_()
tensor([5.])
tensor([5.])
tensor([5.])
tensor([5.])

2. 依赖于叶子结点的结点,requires\_grad 默认为 True

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)
# It can be seen that the attributes of the leaf nodes are all set to True
    print(a.requires_grad, b.requires_grad, y.requires_grad)
True True True

3. 叶子结点不可执行 in place

什么是 in place?

试比拟:

a = torch.ones((1,))
print(id(a), a)

a = a + torch.ones((1,))
print(id(a), a)

a += torch.ones((1,))
print(id(a), a)
# After executing in place, the stored address does not change
2413216666632 tensor([1.])
2413216668472 tensor([2.])
2413216668472 tensor([3.])

叶子节点不能执行 in place,因为反向流传时会用到叶子节点张量的值,如 w。而取值是依照 w 的地址获得,因而如果 w 执行 inplace,则更换了 w 的值,导致反向流传谬误。

逻辑回归 Logistic Regression

逻辑回归是线性的二分类模型

模型表达式:

$\begin{array}{c}
y=f(W X+b)\
f(x)=\frac{1}{1+e^{-x}}
\end{array}$

f(x) 称为 Sigmoid 函数,也称为 Logistic 函数

$\text {class}=\left{\begin{array}{ll}
0, & 0.5>y \
1, & 0.5 \leq y
\end{array}\right.$

逻辑回归

$\begin{array}{c}
y=f(W X+b) \
\quad=\frac{1}{1+e^{-(W X+b)}} \
f(x)=\frac{1}{1+e^{-x}}
\end{array}$

线性回归是剖析自变量 x 与 因变量 y(标量) 之间关系的办法

逻辑回归是剖析自变量 x 与 因变量 y(概率) 之间关系的办法

逻辑回归也称为对数几率回归(等价)。

$\frac{y}{1-y}$ 示意对数几率。示意样本 x 为正样本的可能性。

证实等价:

$\begin{array}{l}
\ln \frac{y}{1-y}=W X+b \
\frac{y}{1-y}=e^{W X+b} \
y=e^{W X+b}-y * e^{W X+b} \
y\left(1+e^{W X+b}\right)=e^{W X+b} \
y=\frac{e^{W X+b}}{1+e^{W X+b}}=\frac{1}{1+e^{-(W X+b)}}
\end{array}$

线性回归

自变量:X
因变量:y
关系:y=𝑊𝑋+𝑏

实质就是用 WX+ b 拟合 y。

对数回归

lny=𝑊𝑋+𝑏

就是用𝑊𝑋+𝑏拟合 lny。

同理,对数几率回归就是用 WX+ b 拟合对数几率。

机器学习模型训练步骤

  • 数据采集,荡涤,划分和预处理:通过一系列的解决使它能够间接输出到模型。
  • 模型:依据工作的难度抉择简略的线性模型或者是简单的神经网络模型。
  • 损失函数:依据不同的工作抉择不同的损失函数,例如在线性回归中采纳均方差损失函数,在分类工作中能够抉择穿插熵。有了 Loss 就能够求梯度。
  • 失去梯度能够抉择某一种优化形式,即优化器。采纳优化器更新权值。
  • 最初再进行迭代训练过程。

逻辑回归的实现

# -*- coding: utf-8 -*-

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)


# ============================ step 1/5 Generate data ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别 0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别 0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别 1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别 1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# ============================ step 2/5 Select Model ============================
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()   # Instantiate a logistic regression model


# ============================ step 3/5 Choose a loss function ============================
# Select the cross-entropy function for binary classification
loss_fn = nn.BCELoss()

# ============================ step 4/5 Choose an optimizer   ============================
lr = 0.01  # Learning rate
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# ============================ step 5/5 model training ============================
for iteration in range(1000):

    # forward propagation
    y_pred = lr_net(train_x)

    # calculate loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # backpropagation
    loss.backward()

    # update parameters
    optimizer.step()

    # clear gradient
    optimizer.zero_grad()

    # drawing
    if iteration % 20 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # Classify with a threshold of 0.5
        correct = (mask == train_y).sum()  # Calculate the number of correctly predicted samples
        acc = correct.item() / train_y.size(0)  # Calculate classification accuracy

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break

实现一个逻辑回归步骤如上。后续会缓缓解释。

正文完
 0