并发
新建大量过程
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if name == “__main__”:
p = multiprocessing.Process(target=func,args=(“hello”,))
p.start()
p.join()
print “Sub-process done.”
过程池
应用 apply_async,没有 async 就是阻塞版本了
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if name == “__main__”:
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = “hello %d” %(i)
pool.apply_async(func,(msg,))
pool.close()
pool.join()
print “Sub-process(es) done.”
应用 Pool,并关注后果
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return “done” + msg
if name == “__main__”:
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = “hello %d” %(i)
result.append(pool.apply_async(func,(msg,)))
pool.close()
pool.join()
for res in result:
print res.get()
print “Sub-process(es) done.”
小结
Python 下比拟好的并行形式是应用多过程,能够十分无效的应用 CPU 资源,实现真正意义上的并发。
线程共享雷同的地址空间和内存,线程之间通信是非常容易的,然而过程之间通信要简单一些。过程间通信有管道,音讯队列,Socket 接口等。