共计 3172 个字符,预计需要花费 8 分钟才能阅读完成。
本文解说一种比拟全能的『机器学习模型可解释性』办法——SHAP。通过调用 Python 的 SHAP 工具库,对机器学习模型做可解释性剖析,判断不同特色对于以后模型的重要水平。
💡 作者:韩信子 @ShowMeAI
📘 机器学习实战系列:https://www.showmeai.tech/tutorials/41
📘 本文地址:https://www.showmeai.tech/article-detail/337
📢 申明:版权所有,转载请分割平台与作者并注明出处
📢 珍藏 ShowMeAI 查看更多精彩内容
近年来,可解释的人工智能(XAI)和可解释的机器学习引起了越来越多的关注,因为间接把模型当做黑箱应用信任度和可控度都会受影响。有一些畛域,模型的可解释性更加重要,例如在医疗畛域,患者会质疑为什么模型诊断出他们患有某种疾病。
在本篇内容中,ShowMeAI 将给大家解说一个风行的模型解释办法 SHAP(SHapley Additive exPlanations),并基于理论案例解说如何基于工具库对模型做解释。
💡 模型可解释办法的划分
咱们对各类模型可解释办法进行划分,有以下一些划分维度:
- 模型无关和模型特定 :一些办法可用于各种模型,而另一些办法是为解释特定模型而创立的。
- 全局和部分解释 :本地意味着进行剖析以理解如何做出特定预测。另一方面,全局解释钻研了影响所有预测的因素。
- 基于模型和预先归因 :基于模型的模型是咱们能够间接了解的模型,例如线性回归模型。另一类是预先解释模型的归因办法,大多数办法都属于这一类。
💡 SHAP 原理
📘SHAP 全称是 SHapley Additive exPlanation,是比拟全能的模型可解释性的办法,既可作用于全局解释,也能够部分解释,即单个样本来看,模型给出的预测值和某些特色可能的关系,能够用 SHAP 来解释。
SHAP 属于模型预先解释的办法,核心思想是计算特色对模型输入的边际奉献,再从全局和部分两个层面对『 黑盒模型 』进行解释。SHAP 构建一个加性的解释模型,所有的特色都视为『贡献者』。
对于每个预测样本,模型都产生一个预测值,SHAP value 就是该样本中每个特色所调配到的数值。
根本思维 :计算一个特色退出到模型时的边际奉献,而后思考到该特色在所有的特色序列的状况下不同的边际奉献,取均值,即某该特色的 SHAP baseline value。
💡 案例实战解说
咱们来拿一个场景案例解说一下 SHAP 如何进行模型可解释剖析,用到的数据是人口普查数据,咱们会调用 Python 的工具库库 SHAP 间接分析模型。
💦 数据阐明
ShowMeAI 在本例中应用到的是 🏆 美国人口普查支出数据集 ,工作是依据人口根本信息预测其年收入是否可能超过 50,000 美元,是一个二分类问题。
数据集能够在以下地址下载:
- 📘 https://archive.ics.uci.edu/ml/datasets/Adult
- 📘 https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
数据从美国 1994 年人口普查数据库抽取而来,能够用来预测居民收入是否超过 50K/year。
- 该数据集类变量为年收入是否超过 50k,属性变量蕴含年龄、工种、学历、职业、人种等重要信息,值得一提的是,14 个属性变量中有 7 个类别型变量。
- 数据集各属性是:其中序号 0~13 是属性,14 是类别。
字段序号 | 字段名 | 含意 | 类型 |
---|---|---|---|
0 | age | 年龄 | Double |
1 | workclass | 工作类型 * | string |
2 | fnlwgt | 序号 | string |
3 | education | 教育水平 * | string |
4 | education_num | 受教育工夫 | double |
5 | maritial_status | 婚姻状况 * | string |
6 | occupation | 职业 * | string |
7 | relationship | 关系 * | string |
8 | race | 种族 * | string |
9 | sex | 性别 * | string |
10 | capital_gain | 资本收益 | string |
11 | capital_loss | 资本损失 | string |
12 | hours_per_week | 每周工作小时数 | double |
13 | native_country | 寄籍 * | string |
14(label) | income | 支出标签 | string |
💦 SHAP 计算 & 模型解释
from sklearn.model_selection import train_test_split
import lightgbm as lgb
import shap
shap.initjs()
X,y = shap.datasets.adult()
X_display,y_display = shap.datasets.adult(display=True)# create a train/test split
# 训练集与测试集切分及解决
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
d_train = lgb.Dataset(X_train, label=y_train)
d_test = lgb.Dataset(X_test, label=y_test)# create a simple model
# 模型参数
params = {
"max_bin": 512,
"learning_rate": 0.05,
"boosting_type": "gbdt",
"objective": "binary",
"metric": "binary_logloss",
"num_leaves": 10,
"verbose": -1,
"min_data": 100,
"boost_from_average": True
}
# 模型训练
model = lgb.train(params, d_train, 10000, valid_sets=[d_test], early_stopping_rounds=50, verbose_eval=1000)# explain the model
# 模型解释
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)# visualize the impact of each features
shap.summary_plot(shap_values, X)
上图中的 SHAP 后果值,通知咱们不同的特色维度(输出)对于以后模型的重要水平,包含总体的重要水平,以及对每个类别的断定的影响水平。
参考资料
- 📘 SHAP 文档 :https://shap.readthedocs.io/en/latest/index.html
- 📘 美国人口普查支出数据集 :https://archive.ics.uci.edu/ml/datasets/census+income
举荐浏览
- 🌍 数据分析实战系列 :https://www.showmeai.tech/tutorials/40
- 🌍 机器学习数据分析实战系列 :https://www.showmeai.tech/tutorials/41
- 🌍 深度学习数据分析实战系列 :https://www.showmeai.tech/tutorials/42
- 🌍 TensorFlow 数据分析实战系列 :https://www.showmeai.tech/tutorials/43
- 🌍 PyTorch 数据分析实战系列 :https://www.showmeai.tech/tutorials/44
- 🌍 NLP 实战数据分析实战系列 :https://www.showmeai.tech/tutorials/45
- 🌍 CV 实战数据分析实战系列 :https://www.showmeai.tech/tutorials/46
- 🌍 AI 面试题库系列 :https://www.showmeai.tech/tutorials/48