共计 3159 个字符,预计需要花费 8 分钟才能阅读完成。
对于人工智能畛域而言,“AIGC”无疑是贯通 2022 年的热点。12 月 16 日,Science 杂志公布了 2022 年度迷信十大冲破,AIGC 赫然在列。以文生图,对话机器人等 AI 翻新利用的落地,引发一轮又一轮的全民狂欢热潮。AI 技术蓬勃发展,如何能力更好的实现 AI 翻新落地、迈向新的增长呢?AI 翻新的落地,离不开对数据计算剖析、模型开发部署、在线训练推理、利用开发运维等各种环节进行全周期治理。而这恰好是阿里灵杰——阿里云大数据+AI 一体化产品体系所善于和一直夯实的。
12 月 22 日,2022 阿里灵杰 AI 开发者峰会圆满闭幕。阿里巴巴团体副总裁、阿里云智能计算平台事业部高级研究员、达摩院零碎 AI 实验室负责人贾扬清等 9 位技术大咖亮相本次峰会,为宽广 AI 开发者解读阿里灵杰 AI 能力全景和开发者服务体系,并通过丰盛的场景化演示,出现全新的 AI 开发体验。
贾扬清:开源 + 工程化,为 AI 普惠提供土壤
阿里巴巴团体副总裁、阿里云智能计算平台事业部高级研究员、达摩院零碎 AI 实验室负责人贾扬清从 AIGC 这一话题切入,和大家独特探讨:在从工程或者平台的角度思考,怎么样来进一步反对 AI 的倒退,以及它可能和理论的业务联合,带来怎么的变动?
(图:阿里巴巴团体副总裁、阿里云智能计算平台事业部高级研究员、达摩院零碎 AI 实验室负责人贾扬清分享“开源 + 工程化:AI 普惠的土壤”)
在 AI 畛域,开源成为推动着 AI 一直向前倒退的能源,使得 AI 的翻新可能变得更加迅速。但仅有一个模型或开源的软件,并不足够,须要通过工程化的办法,利用明天计算机这个畛域所带来的长足的倒退。贾扬清认为,AI 工程化,能够被总结称为以下三个趋势:数据和算力的云原生化;调度和编程范式的规模化;开发和服务的标准化普惠化。
2022 年,阿里云和达摩院一起单干,构建并推出了两个平台。从供应的角度登程,推出模型服务共享社区 ModelScope(魔搭),将多样化的模型以一种齐全开源的形式出现给开发者们;从需要的角度登程,提供凋谢服务平台 OpenMinD,通过规范的 API 服务,简略不便地将模型嵌入理论利用当中。与此同时,随着 AI 的工程化、规模化,阿里灵杰始终致力于让整个 AI 开发的链路变得更加简略,实现开发效率的晋升,以及模型部署和服务的老本升高。贾扬清提到,“咱们心愿通过云的规范服务平台,可能使得这些利用都变得更加简略。让大家可能更好的用好云。”
(图:规范、凋谢,为 AI 开发者提供好工具)
阿里灵杰继续将核心技术能力共享给社会各界的开发者们,促使开源社区更好的迭代,并且从开发者们的不同需要登程,继续做出翻新。现如今,阿里灵杰 AI 平台撑持超过 100 万的开发者,AI 服务每日调用次数超 1 万亿次,提供过万个 AI 模型服务。在将来,阿里灵杰也将继续通过 AI 开源,通过平台化、工程化的形式,和开源社区一起,实现 AI 与业务的交融,独特构建 AI 更加璀璨的今天。
阿里灵杰 AI 平台年度新公布
聚焦阿里灵杰的 AI 能力,阿里云智能 AI 产品总监黄博远带来了一系列新性能公布。黄博远介绍,PAI 提供从数据筹备、模型开发、到模型部署、训练的全流程平台能力,为宽广开发者带来更优的应用体验,更快的零碎性能,更低的应用老本。此次产品升级次要是 4 个方面:
- 大数据 +AI 一体化平台。提供了数据筹备、模型开发、模型部署、到上线的调优、利用、监控等一些列能力,高效实现模型开发全流程。PAI-DSW 集成大数据能力,反对大数据生态无缝接入;异构资源一站式治理,晋升利用率。
- 公布 DSW Gallery 多场景应用案例,集成阿里外部最佳实际,实现“手把手打造 AI 利用”。内置代码和数据模版,轻松构建业务流程,高效实现业务在平台上的落地。
- PAI 无缝对接模型即服务共享平台 ModelScope,提供 300 多个成熟模型便于检索、应用,同时反对零门槛在线体验。PAI-DSW 集成 ModelScope 的镜像,PAI-EAS 提供齐全对接云化的弹性推理服务,可间接实现模型的拉起。
- PAI 踊跃拥抱开源生态,通过机器学习 PAI 平台的云原生的一系列开发工具,反对用户自定义镜像;继续参加开源我的项目,如 Flink、Spark 等;除开源技术外,继续在核心技术畛域做出建设,如编译优化、分布式训练、异构调度等。
(图:阿里云机器学习 PAI,服务开发者的一站式平台)
DSW Gallery 多场景应用案例
机器学习平台 PAI 往年公布了 DSW Gallery 多场景应用案例,为开发者们出现基于 Notebook 的全新 AI 开发体验,帮忙开发者们实现 AI 业务的落地减速以及建模环节更好的体验成果。阿里云智能高级产品经理马渝泽提出,在理论业务中,算法工程师们往往在读取数据、工作治理、环境治理等环节消耗的工夫远超于构建模型自身。DSW Gallery 是应用 PAI 的无效指引,可通过 Notebook 的模式,间接应用 PAI 的各个组件,帮忙开发者疾速相熟云原生下的 AI 研发流程。同时,DSW Gallery 为宽广 AI 开发者提供来自各个行业和技术方向的丰盛案例和解决方案,可进行案例的预览、疾速启动,反对将案例批改为适宜理论业务的应用场景。无效晋升开发效率和品质,疾速实现模型构建和训练。同时,友达光电 Principal Architect Clark Chang 也示意,在理论利用当中,DSW Gallery 可一步到位实现 AI 计划的落地,免于筛选算法、环境配置、运维治理等繁杂流程。
阿里灵杰 MLOps 能力公布
预训练模型和开源模型社区升高了模型训练的门槛,但整个机器学习过程依然非常复杂,模型生产效率往往不高。阿里云智能资深技术专家、机器学习 PAI MLOps 技术负责人罗义云认为,在深度学习进入到大模型时代后,模型开发范式已被扭转。机器学习平台 PAI 反对预训练模型的开发和部署,以 ModelScope 上的文本生成预训练模型为根底,可通过 PAI 进行微调训练,疾速产生一个对联生成模型,并部署成一个在线服务,高效实现一站式的模型开发和部署流程。
阿里灵杰始终踊跃拥抱开源生态,与开源共生,与开发者们同行。阿里云智能资深算法专家、EasyCV、EasyNLP 开源我的项目负责人黄俊示意,AI 技术的飞速发展离不开开源社区的奉献。产品拥抱开源的同时,也在继续技术奉献开源。机器学习平台 PAI 作为 AI 工程化平台,继续将涵盖了 AI 开发全链路的自研优良技术反馈至开源社区,壮大开源社区的力量。
在电商畛域,以后搜索引擎中 AI 模型无处不在,尤其在向量检索、多模态搜寻等细分方向中对 AI 模型重度依赖。阿里云智能资深技术专家、阿里云凋谢搜寻研发负责人邢少敏通过一些实例展现如何在 Opensearch 中集成和利用 AI 模型的全流程,以及相应的业务价值。
阿里云天池 “ 英特尔翻新大师杯寰球 AI 极客挑战赛 ” 颁奖典礼
为摸索 CTR 模型性能优化的方向,推动 CTR 模型训练效率晋升,启动本次由阿里云联结英特尔主办,阿里云天池平台、机器学习 PAI 等组织机构承办的 英特尔“翻新大师杯”寰球 AI 极客挑战赛——DeepRec CTR 模型性能优化赛。借助本次大赛,在 DeepRec 中积淀 CTR 模型新的优化思路和优化方向,共享教训成绩,领导和推动理论工业理论场景中点击率预估模型的训练效率的晋升。
通过数月征集和评比,“英特尔翻新大师杯”颁奖典礼也在此次峰会举办。阿里云智能资深技术专家、DeepRec 开源我的项目负责人李永为获奖者们颁奖。
正如贾扬清所言,AI 始终在一个又一个翻新的巅峰后,带来更多的惊喜。阿里灵杰继续夯实 AI 能力体系,与开发者们一路同行,一起实现 AI 翻新利用的减速落地,独特摸索 AI 落地产业的范式降级。将来,阿里灵杰将持续促成 AI 产业的蓬勃发展,携手宽广开发者们在云上共创增长新曲线。
官网链接:https://tianchi.aliyun.com/sp…