Redis 作为一个 Client-Server 架构的数据库,其源码中少不了用来实现网络通信的局部。
为了实现高并发的网络通信,咱们罕用的 Linux 操作系统,就提供了 select、poll 和 epoll 三种编程模型,而在 Linux 上运行的 Redis,通常就会采纳其中的 epoll 模型来进行网络通信。
(1) 为什么 Redis 不应用根本的 Socket 编程模型?
应用 Socket 模型实现网络通信时,须要通过 创立 Socket、监听端口、解决连贯 和 读写申请等多个步骤
须要留神的是,accept 函数是阻塞函数,也就是说,如果此时始终没有客户端连贯申请,那么,服务器端的执行流程会始终阻塞在 accept 函数。
尽管它可能实现服务器端和客户端之间的通信,然而程序每调用一次 accept 函数,只能解决一个客户端连贯。
这个显然不满足高并发的要求
IO 模型 https://weikeqin.com/2020/06/…
参考 IO 模型,要想满足高并发,个别都应用 IO 多路复用
(2) RedisServer 网络申请解决流程
(2.1) 绑定地址并监听套接字(bind listen)
// file: src/server.c
// 监听端口
/**
* @param port
* @param *fds
* @param *count
*/
int listenToPort(int port, int *fds, int *count) {
// ...
for (j = 0; j < server.bindaddr_count || j == 0; j++) {
// ... 省略 绑定 IPV6 IPV4 的细节 anetTcp6Server anetTcpServer
// 绑定
fds[*count] = anetTcpServer(server.neterr,port,NULL,
server.tcp_backlog);
// ...
}
return C_OK;
}
Redis 是反对开启多个端口的,所以在 listenToPort 中咱们看到是启用一个循环来调用 anetTcpServer。
在 anetTcpServer 中,逐渐会开展调用,直到执行到 bind 和 listen 零碎调用。
// file: src/anet.c
/**
* @param *err
* @param port
* @param *bindaddr
* @param backlog
*/
int anetTcpServer(char *err, int port, char *bindaddr, int backlog)
{return _anetTcpServer(err, port, bindaddr, AF_INET, backlog);
}
/**
* @param *err
* @param port
* @param *bindaddr
* @param af
* @param backlog
*/
static int _anetTcpServer(char *err, int port, char *bindaddr, int af, int backlog)
{
int s = -1, rv;
char _port[6]; /* strlen("65535") */
struct addrinfo hints, *servinfo, *p;
// 创立套接字
s = socket(p->ai_family,p->ai_socktype,p->ai_protocol)
// 设置端口重用
anetSetReuseAddr(err,s)
// 监听
anetListen(err,s,p->ai_addr,p->ai_addrlen,backlog)
/**
* 监听
*
* @param *err
* @param s 对应创立的套接字 fd
* @param *sa socket 地址信息 (协定 地址)
* @param len
* @param backlog
*/
static int anetListen(char *err, int s, struct sockaddr *sa, socklen_t len, int backlog) {
// 绑定 ip 端口
bind(s,sa,len)
// 监听套接字
listen(s, backlog)
return ANET_OK;
}
(2.2) 和客户端建设连贯(accept)
// file: src/networking.c
/**
* 接管 tcp 处理器
*
* @param *el
* @param fd
* @param *privdata
* @param mask
*/
void acceptTcpHandler(aeEventLoop *el, int fd, void *privdata, int mask) {
// ...
// 接管 tcp 申请
cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport);
// ...
// 接管通用解决
acceptCommonHandler(connCreateAcceptedSocket(cfd),0,cip);
}
(2.2.1) 接管 tcp 申请 -anetTcpAccept
// file: src/anet.c
/**
* 接管 tcp 申请
*
* @param *err
* @param s fd
* @param *ip
* @param ip_len
* @param *port
*/
int anetTcpAccept(char *err, int s, char *ip, size_t ip_len, int *port) {
int fd;
struct sockaddr_storage sa; // 套接字地址存储构造体
socklen_t salen = sizeof(sa);
// 接管申请
fd = anetGenericAccept(err,s,(struct sockaddr*)&sa,&salen)
// ...
return fd;
}
// file: src/anet.c
/**
* @param *err
* @param s
* @param *sa
* @param *len
*/
static int anetGenericAccept(char *err, int s, struct sockaddr *sa, socklen_t *len) {
int fd;
while(1) {
// 接管 socket 数据
// fd 是 socket 返回的 socket,指向的定义的 SOCKADDR_IN 构造体指针,指针的大小
fd = accept(s,sa,len);
// ...
break;
}
return fd;
}
(2.2.2) 接管公共处理器 -acceptCommonHandler
/**
*
*/
acceptCommonHandler(connCreateAcceptedSocket(cfd),0,cip);
// file: src/networking.c
/**
* @param *conn
* @param flags
* @param *ip
*/
static void acceptCommonHandler(connection *conn, int flags, char *ip) {
client *c;
// 创立 redisClient 对象
c = createClient(conn)
// 建设连贯
connAccept(conn, clientAcceptHandler)
}
(2.2.2.1) connCreateAcceptedSocket()
conn 是怎么创立的
// file: src/connection.c
/**
* @param fd
*/
connection *connCreateAcceptedSocket(int fd) {
// 创立连贯
connection *conn = connCreateSocket();
//
conn->fd = fd;
// 设置连贯状态为接管中
conn->state = CONN_STATE_ACCEPTING;
return conn;
}
// file: src/connection.h
/**
* 连接结构体
*/
struct connection {
ConnectionType *type; // 连贯类型 在前面会用到
ConnectionState state; // 连贯状态
short int flags;
short int refs;
int last_errno;
void *private_data; // 公有数据
ConnectionCallbackFunc conn_handler; // 连贯处理器
ConnectionCallbackFunc write_handler; // 写处理器
ConnectionCallbackFunc read_handler; // 读处理器
int fd; //
};
(2.2.2.2) 创立 redisClient 对象 -createClient()
// file: src/networking.c
/**
* @param *conn
*/
client *createClient(connection *conn) {
// 为用户连贯创立 client 构造体
client *c = zmalloc(sizeof(client));
if (conn) {
// ... 解决连贯
// 注册读事件处理器,等连贯可读时调用 回调函数是 readQueryFromClient
connSetReadHandler(conn, readQueryFromClient);
// 会把新创建的 client 构造体放到 conn 构造体的 private_data 字段里
connSetPrivateData(conn, c);
}
// 设置 client 的一些参数
selectDb(c,0);
uint64_t client_id = ++server.next_client_id;
c->id = client_id;
c->resp = 2;
c->conn = conn;
// ...
return c;
}
client 构造体次要属性
// file: src/server.h
typedef struct client {
uint64_t id; /* 客户端增量惟一 ID */
connection *conn; /** 连贯 */
int resp; /* 响应协定版本 可能是 2 或 3 */
redisDb *db; /* 指向以后选中的 Db */
robj *name; /* 由客户端设置的名称 */
sds querybuf; /* 用来累积客户端查问的缓冲区 */
size_t qb_pos; /* querybuf 中读取到的地位 */
// ... 省略局部字段
/* Response buffer */
int bufpos; //
char buf[PROTO_REPLY_CHUNK_BYTES]; //
} client;
// file: src/connection.h
/*
* 注册读事件处理器,等连贯可读时调用
*
* @param *conn
* @param func ConnectionCallbackFunc 类型的回调函数
*/
static inline int connSetReadHandler(connection *conn, ConnectionCallbackFunc func) {return conn->type->set_read_handler(conn, func);
}
(2.2.2.3) 接管申请 -connAccept()
/* The connection module does not deal with listening and accepting sockets,
* so we assume we have a socket when an incoming connection is created.
*
* The fd supplied should therefore be associated with an already accept()ed
* socket.
*
* connAccept() may directly call accept_handler(), or return and call it
* at a later time. This behavior is a bit awkward but aims to reduce the need
* to wait for the next event loop, if no additional handshake is required.
*
* IMPORTANT: accept_handler may decide to close the connection, calling connClose().
* To make this safe, the connection is only marked with CONN_FLAG_CLOSE_SCHEDULED
* in this case, and connAccept() returns with an error.
*
* connAccept() callers must always check the return value and on error (C_ERR)
* a connClose() must be called.
*
* @param *conn 连贯
* @param accept_handler 接管处理器 是一个回调函数 ConnectionCallbackFunc
*/
static inline int connAccept(connection *conn, ConnectionCallbackFunc accept_handler) {return conn->type->accept(conn, accept_handler);
}
conn->type 对应 ConnectionType 构造体
// file: src/connection.h
typedef struct ConnectionType {void (*ae_handler)(struct aeEventLoop *el, int fd, void *clientData, int mask);
int (*connect)(struct connection *conn, const char *addr, int port, const char *source_addr, ConnectionCallbackFunc connect_handler);
int (*write)(struct connection *conn, const void *data, size_t data_len);
int (*read)(struct connection *conn, void *buf, size_t buf_len);
void (*close)(struct connection *conn);
int (*accept)(struct connection *conn, ConnectionCallbackFunc accept_handler);
int (*set_write_handler)(struct connection *conn, ConnectionCallbackFunc handler, int barrier);
int (*set_read_handler)(struct connection *conn, ConnectionCallbackFunc handler);
const char *(*get_last_error)(struct connection *conn);
int (*blocking_connect)(struct connection *conn, const char *addr, int port, long long timeout);
ssize_t (*sync_write)(struct connection *conn, char *ptr, ssize_t size, long long timeout);
ssize_t (*sync_read)(struct connection *conn, char *ptr, ssize_t size, long long timeout);
ssize_t (*sync_readline)(struct connection *conn, char *ptr, ssize_t size, long long timeout);
int (*get_type)(struct connection *conn);
} ConnectionType;
file: src/networking.c
/**
* @param *conn
*/
void clientAcceptHandler(connection *conn) {
//
client *c = connGetPrivateData(conn);
//
moduleFireServerEvent(REDISMODULE_EVENT_CLIENT_CHANGE,
REDISMODULE_SUBEVENT_CLIENT_CHANGE_CONNECTED,
c);
}
(2.3) 从连贯的 socket 读取客户端发送的数据(recv/read)
上一步监听后,等到 client 向 redisServer 发送的数据达到,会触发设置的回调办法 readQueryFromClient
,redisServer 会调用readQueryFromClient()
办法
// file: src/networking.c
/**
* @param *conn
*/
void readQueryFromClient(connection *conn) {
// 从连贯的公有数据获取 client // 在创立连贯时把 client 放到了 connection 的 private_data 字段
client *c = connGetPrivateData(conn);
//
// 客户端输出缓冲区中有更多的数据,请持续解析它,以防查看是否有要执行的残缺命令。processInputBuffer(c);
}
(2.4) 解决读到的数据
从输出缓冲区读到数据后,上面就开始解决数据
// file: src/networking.c
/* This function is called every time, in the client structure 'c', there is
* more query buffer to process, because we read more data from the socket
* or because a client was blocked and later reactivated, so there could be
* pending query buffer, already representing a full command, to process. */
void processInputBuffer(client *c) {
// ...
processCommandAndResetClient(c);
}
/* This function calls processCommand(), but also performs a few sub tasks
* for the client that are useful in that context:
*
* 1. It sets the current client to the client 'c'.
* 2. calls commandProcessed() if the command was handled.
*
* The function returns C_ERR in case the client was freed as a side effect
* of processing the command, otherwise C_OK is returned. */
int processCommandAndResetClient(client *c) {
int deadclient = 0;
server.current_client = c;
// 解决命令
if (processCommand(c) == C_OK) {commandProcessed(c);
}
return deadclient ? C_ERR : C_OK;
}
// file: src/server.c
/**
* 解决各种命令 get set del exits quit lpush sadd 等
*
* @param *c
*/
int processCommand(client *c) {
// 查找命令,并进行命令合法性检查,以及命令参数个数查看
/* Now lookup the command and check ASAP about trivial error conditions
* such as wrong arity, bad command name and so forth. */
c->cmd = c->lastcmd = lookupCommand(c->argv[0]->ptr);
// ... 省略其余命令解决逻辑
// 解决命令
/* Exec the command */
if (c->flags & CLIENT_MULTI &&
c->cmd->proc != execCommand && c->cmd->proc != discardCommand &&
c->cmd->proc != multiCommand && c->cmd->proc != watchCommand)
{ // 如果是 MULTI 事务,则入队
queueMultiCommand(c);
addReply(c,shared.queued);
} else { // 调用 call 间接解决
call(c,CMD_CALL_FULL);
c->woff = server.master_repl_offset;
if (listLength(server.ready_keys))
handleClientsBlockedOnKeys();}
return C_OK;
}
// file: src/server.c
/**
* 依据 key 查找值
*
* @param name
*/
struct redisCommand *lookupCommand(sds name) {
//
return dictFetchValue(server.commands, name);
}
/**
* call() 是 Redis 执行命令的外围。*
* @param *c
* @param flags
*/
void call(client *c, int flags) {
// 要执行的 redis 命令
struct redisCommand *real_cmd = c->cmd;
// 调用命令处理函数
c->cmd->proc(c);
}
proc 对应的 command 有以下几种
/**
*
*/
struct redisCommand redisCommandTable[] = {
{"module",moduleCommand,-2,
"admin no-script",
0,NULL,0,0,0,0,0,0},
{"get",getCommand,2,
"read-only fast @string",
0,NULL,1,1,1,0,0,0},
/* Note that we can't flag set as fast, since it may perform an
* implicit DEL of a large key. */
{"set",setCommand,-3,
"write use-memory @string",
0,NULL,1,1,1,0,0,0},
{"setnx",setnxCommand,3,
"write use-memory fast @string",
0,NULL,1,1,1,0,0,0},
{"setex",setexCommand,4,
"write use-memory @string",
0,NULL,1,1,1,0,0,0},
// ..
{"rpush",rpushCommand,-3,
"write use-memory fast @list",
0,NULL,1,1,1,0,0,0},
{"lpush",lpushCommand,-3,
"write use-memory fast @list",
0,NULL,1,1,1,0,0,0},
// ...
{"sadd",saddCommand,-3,
"write use-memory fast @set",
0,NULL,1,1,1,0,0,0},
// ...
{"zadd",zaddCommand,-4,
"write use-memory fast @sortedset",
0,NULL,1,1,1,0,0,0},
// ...
{"stralgo",stralgoCommand,-2,
"read-only @string",
0,lcsGetKeys,0,0,0,0,0,0}
};
如果命令是 get,其对应的命令处理函数就是 getCommand
(2.4.1) getCommand
// file: t_string.c
/**
* @param *c
*/
void getCommand(client *c) {getGenericCommand(c);
}
int getGenericCommand(client *c) {
robj *o;
// 查找 key
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp])) == NULL)
return C_OK;
// 找到 key 对应的值了
if (o->type != OBJ_STRING) { // key 的对象类型不是 string 类型 返回谬误
addReply(c,shared.wrongtypeerr);
return C_ERR;
} else { // key 的对象类型是 string 类型
// 将后果增加到输入缓冲区中
addReplyBulk(c,o);
return C_OK;
}
}
// file: src/networking.c
/* Add a Redis Object as a bulk reply */
void addReplyBulk(client *c, robj *obj) {addReplyBulkLen(c,obj);
addReply(c,obj);
addReply(c,shared.crlf);
}
(2.4.2) setCommand
// file: src.t_string.c
/**
*
* @param *c
* @param flags
* @param *key
* @param *val
* @param *expire
* @param unit
* @param *ok_reply
* @param *abort_reply
*/
void setGenericCommand(client *c, int flags, robj *key, robj *val, robj *expire, int unit, robj *ok_reply, robj *abort_reply) {
// 64 位精度整数
long long milliseconds = 0; /* initialized to avoid any harmness warning */
if (expire) {if (getLongLongFromObjectOrReply(c, expire, &milliseconds, NULL) != C_OK)
return;
if (milliseconds <= 0) {addReplyErrorFormat(c,"invalid expire time in %s",c->cmd->name);
return;
}
if (unit == UNIT_SECONDS) milliseconds *= 1000;
}
if ((flags & OBJ_SET_NX && lookupKeyWrite(c->db,key) != NULL) ||
(flags & OBJ_SET_XX && lookupKeyWrite(c->db,key) == NULL))
{addReply(c, abort_reply ? abort_reply : shared.null[c->resp]);
return;
}
genericSetKey(c,c->db,key,val,flags & OBJ_SET_KEEPTTL,1);
server.dirty++;
if (expire) setExpire(c,c->db,key,mstime()+milliseconds);
notifyKeyspaceEvent(NOTIFY_STRING,"set",key,c->db->id);
if (expire) notifyKeyspaceEvent(NOTIFY_GENERIC,
"expire",key,c->db->id);
addReply(c, ok_reply ? ok_reply : shared.ok);
}
(2.5) 给客户端返回后果(send)
无论是执行 get 命令还是 set 命令,最初执行完命令都会调用 addReply()
办法
在addReply
办法中做了两件事件:
1、prepareClientToWrite
判断是否须要返回数据,并且将以后 client 增加到期待写返回数据队列中。
2、调用 _addReplyToBuffer
和 _addReplyObjectToList
办法将返回值写入到输入缓冲区中,期待写入 socekt
// file: src/networking.c
/* -----------------------------------------------------------------------------
* 更高级别的函数用于在客户端输入缓冲区上对数据进行排队。* 以下函数是命令实现将调用的函数。* -------------------------------------------------------------------------- */
/*
* 将对象“obj”字符串示意增加到客户端输入缓冲区。*
* @param *c redis client
* @param *obj 命令执行的后果 类型是 redisObject
*/
void addReply(client *c, robj *obj) {// 判断 client 是否能够接管新数据 (假客户端不能接管)
if (prepareClientToWrite(c) != C_OK) return;
// 依据 redisobject 格局把数据写入缓存
if (sdsEncodedObject(obj)) { // obj 如果是 row 或者 embstr 格局
// 尝试将应答增加到客户端构造中的动态缓冲区。if (_addReplyToBuffer(c,obj->ptr,sdslen(obj->ptr)) != C_OK)
// 将回复增加到回复列表中。_addReplyProtoToList(c,obj->ptr,sdslen(obj->ptr));
} else if (obj->encoding == OBJ_ENCODING_INT) { // obj 是数字格局
/* 对于整数编码字符串,咱们只需应用优化函数将其转换为字符串,并将后果字符串附加到输入缓冲区。*/
char buf[32];
// 数字转为字符串
size_t len = ll2string(buf,sizeof(buf),(long)obj->ptr);
if (_addReplyToBuffer(c,buf,len) != C_OK)
_addReplyProtoToList(c,buf,len);
} else {serverPanic("Wrong obj->encoding in addReply()");
}
}
// file: src/networking.c
/* -----------------------------------------------------------------------------
* 低级函数用于向输入缓冲区增加更多数据。* -------------------------------------------------------------------------- */
/**
* 尝试将应答增加到客户端构造中的动态缓冲区。* 如果缓冲区已满或回复列表不为空,则返回 C_ERR,在这种状况下,必须将回复增加到回复列表中。*
* @param *c
* @param *s 要写入的数据
* @param len 数据长度
*/
int _addReplyToBuffer(client *c, const char *s, size_t len) {
// 残余缓冲区大小
size_t available = sizeof(c->buf)-c->bufpos;
if (c->flags & CLIENT_CLOSE_AFTER_REPLY) return C_OK;
/* 如果回复列表中曾经有内容,则无奈向动态缓冲区增加更多内容。*/
if (listLength(c->reply) > 0) return C_ERR;
/* 查看缓冲区是否有足够的空间用于此字符串。*/
if (len > available) return C_ERR;
// 把数据 *s(char[]类型) 拷贝到 client 对象的 Response buffer 中
memcpy(c->buf+c->bufpos,s,len);
// 更新已应用缓冲区大小
c->bufpos+=len;
return C_OK;
}
/**
* 将回复增加到回复列表中。* 留神:对该函数的一些编辑须要转发到 AddReplyFromClient。*
* @param *c
* @param *s 要写入的数据
* @param len 数据长度
*/
void _addReplyProtoToList(client *c, const char *s, size_t len) {
// 写入回复后敞开
if (c->flags & CLIENT_CLOSE_AFTER_REPLY) return;
// 双向链表尾部
listNode *ln = listLast(c->reply);
// 链表里存的数据是 clientReplyBlock 类型 是一个 buf 数组,有大小限度
clientReplyBlock *tail = ln? listNodeValue(ln): NULL;
/* Note that 'tail' may be NULL even if we have a tail node, because when
* addReplyDeferredLen() is used, it sets a dummy node to NULL just
* fo fill it later, when the size of the bulk length is set. */
/* 尽可能追加到尾部字符串。*/
if (tail) {
/* 复制咱们能够放入尾部的局部,并将其余部分留给新节点 */
size_t avail = tail->size - tail->used;
// * s 要复制的局部 (可能是全副,可能是局部)
size_t copy = avail >= len? len: avail;
// 复制到 buf 数组里
memcpy(tail->buf + tail->used, s, copy);
tail->used += copy;
s += copy;
len -= copy;
}
// len>0
if (len) {
/* 创立一个新节点,确保至多为其调配了 16K */
size_t size = len < PROTO_REPLY_CHUNK_BYTES? PROTO_REPLY_CHUNK_BYTES: len;
tail = zmalloc(size + sizeof(clientReplyBlock));
/* take over the allocation's internal fragmentation */
tail->size = zmalloc_usable(tail) - sizeof(clientReplyBlock);
tail->used = len;
memcpy(tail->buf, s, len);
listAddNodeTail(c->reply, tail);
c->reply_bytes += tail->size;
}
// 缓冲区达到限度后异步敞开客户端
asyncCloseClientOnOutputBufferLimitReached(c);
}
(2.5.1) 回复列表中的数据什么时候写入到输入缓冲区呢?
// file: src/ae.c
void aeMain(aeEventLoop *eventLoop) {
eventLoop->stop = 0;
// 循环
while (!eventLoop->stop) {
// 处理事件
aeProcessEvents(eventLoop, AE_ALL_EVENTS|
AE_CALL_BEFORE_SLEEP|
AE_CALL_AFTER_SLEEP);
}
}
/**
* 处理事件
*/
int aeProcessEvents(aeEventLoop *eventLoop, int flags)
{
//
if (eventLoop->beforesleep != NULL && flags & AE_CALL_BEFORE_SLEEP)
eventLoop->beforesleep(eventLoop);
}
// file: src/server.c
/* This function gets called every time Redis is entering the
* main loop of the event driven library, that is, before to sleep
* for ready file descriptors.
*
* Note: This function is (currently) called from two functions:
* 1. aeMain - The main server loop
* 2. processEventsWhileBlocked - Process clients during RDB/AOF load
*
* If it was called from processEventsWhileBlocked we don't want
* to perform all actions (For example, we don't want to expire
* keys), but we do need to perform some actions.
*
* The most important is freeClientsInAsyncFreeQueue but we also
* call some other low-risk functions. */
void beforeSleep(struct aeEventLoop *eventLoop) {
/* 解决具备挂起的输入缓冲区的写入。*/
handleClientsWithPendingWritesUsingThreads();}
// file: src/networking.c
int handleClientsWithPendingWritesUsingThreads(void) {int processed = listLength(server.clients_pending_write);
if (processed == 0) return 0; /* Return ASAP if there are no clients. */
/* If I/O threads are disabled or we have few clients to serve, don't
* use I/O threads, but thejboring synchronous code. */
if (server.io_threads_num == 1 || stopThreadedIOIfNeeded()) {return handleClientsWithPendingWrites();
}
/* Start threads if needed. */
if (!server.io_threads_active) startThreadedIO();
if (tio_debug) printf("%d TOTAL WRITE pending clients\n", processed);
/* Distribute the clients across N different lists. */
listIter li;
listNode *ln;
/* 把 server.clients_pending_write 链表 赋值 给迭代器 &li */
listRewind(server.clients_pending_write,&li);
int item_id = 0;
// 遍历链表 server.clients_pending_write
while((ln = listNext(&li))) {client *c = listNodeValue(ln);
c->flags &= ~CLIENT_PENDING_WRITE;
// & 状态 = 尽快敞开
if (c->flags & CLIENT_CLOSE_ASAP) {
// 删除双向链表里的以后节点
listDelNode(server.clients_pending_write, ln);
continue;
}
int target_id = item_id % server.io_threads_num;
// 把 c 增加到 io_threads_list[target_id]链表尾部 前面会用到
listAddNodeTail(io_threads_list[target_id],c);
item_id++;
}
/* 把 io_threads_list[0]链表 赋值 给迭代器 &li */
listRewind(io_threads_list[0],&li);
// 遍历链表 io_threads_list[0]
while((ln = listNext(&li))) {client *c = listNodeValue(ln);
// 将 client 的数据发送进来
writeToClient(c,0);
}
listEmpty(io_threads_list[0]);
/* 把 server.clients_pending_write 链表 赋值 给迭代器 &li */
listRewind(server.clients_pending_write,&li);
// 遍历链表 server.clients_pending_write
while((ln = listNext(&li))) {
// 获取节点
client *c = listNodeValue(ln);
/* 如果某些客户端中存在挂起的写入,装置写入处理程序。*/
// 如果一次发送不完则筹备下一次发送
if (clientHasPendingReplies(c) &&
connSetWriteHandler(c->conn, sendReplyToClient) == AE_ERR)
{freeClientAsync(c);
}
}
listEmpty(server.clients_pending_write);
return processed;
}
(2.5.2) 写事件处理器 -sendReplyToClient
// file: src/networking.c
/**
* 写事件处理器
* 仅仅发送数据到 client
*
* Write event handler. Just send data to the client.
*/
void sendReplyToClient(connection *conn) {client *c = connGetPrivateData(conn);
//
writeToClient(c,1);
}
(2.5.3) 把数据写入客户端的输入缓冲区
// file: src/networking.c
/**
* 把数据写入客户端的输入缓冲区
*
* Write data in output buffers to client. Return C_OK if the client
* is still valid after the call, C_ERR if it was freed because of some
* error. If handler_installed is set, it will attempt to clear the
* write event.
*
* This function is called by threads, but always with handler_installed
* set to 0. So when handler_installed is set to 0 the function must be
* thread safe. */
int writeToClient(client *c, int handler_installed) {
/* Update total number of writes on server */
server.stat_total_writes_processed++;
ssize_t nwritten = 0, totwritten = 0;
size_t objlen;
clientReplyBlock *o;
while(clientHasPendingReplies(c)) {if (c->bufpos > 0) { // 缓冲区有数据
// 把缓冲区数据写入 socket
nwritten = connWrite(c->conn,c->buf+c->sentlen,c->bufpos-c->sentlen);
} else { // 解决待发送链表
o = listNodeValue(listFirst(c->reply));
objlen = o->used;
if (objlen == 0) {
c->reply_bytes -= o->size;
listDelNode(c->reply,listFirst(c->reply));
continue;
}
// 把链表节点里的数据写入 socket
nwritten = connWrite(c->conn, o->buf + c->sentlen, objlen - c->sentlen);
}
}
return C_OK;
}
// file: src/connection.h
/**
* 把数据写入到连贯里
*/
static inline int connWrite(connection *conn, const void *data, size_t data_len) {return conn->type->write(conn, data, data_len);
}
(3) RedisServer 里 IO 多路复用代码详解
在 initServer
这个函数内,Redis 做了这么三件重要的事件。
1、创立一个 epoll 对象
2、对配置的端口进行监听(listen)
3、把 listen socket 让 epoll 给治理起来
//file: src/server.c
void initServer(void) {
// 2.1 创立 epoll
server.el = aeCreateEventLoop(server.maxclients+CONFIG_FDSET_INCR);
// 2.2 绑定监听服务端口
// Open the TCP listening socket for the user commands.
listenToPort(server.port,server.ipfd,&server.ipfd_count)
// 2.3 注册 accept 事件处理器
// Create an event handler for accepting new connections in TCP and Unix domain sockets.
for (j = 0; j < server.ipfd_count; j++) {aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE,
acceptTcpHandler,NULL)
}
}
(3.1) 创立 epoll-aeCreateEventLoop
redisServer 构造
// file: src/server.h
// redisServer 构造体
struct redisServer {
// ... 省略局部代码
aeEventLoop *el;
// ... 省略局部代码
}
aeEventLoop 构造
// file: src/ae.h
// 基于事件的程序的状态
/* State of an event based program */
typedef struct aeEventLoop {
int maxfd; // 以后注册的最大文件描述符
int setsize; // 跟踪的最大文件描述符数
long long timeEventNextId;
time_t lastTime; /* Used to detect system clock skew */
aeFileEvent *events; // 注册事件数组的指针 指向 aeFileEvent 数组
aeFiredEvent *fired; // 就绪事件数组的指针 指向 aeFiredEvent 数组
aeTimeEvent *timeEventHead; // 工夫事件
int stop;
void *apidata; // 指向 aeApiState 构造体 创立的 epoll 对象就在 aeApiState->epfd
aeBeforeSleepProc *beforesleep; // 在事件处理前执行的函数
aeBeforeSleepProc *aftersleep; // 在事件处理后执行的函数
int flags;
} aeEventLoop;
// file: src/ae.h
// 文件事件构造
/* File event structure */
typedef struct aeFileEvent {
int mask; // 标记 可读 / 可写 / 屏障
aeFileProc *rfileProc; // 写事件回调
aeFileProc *wfileProc; // 读事件回调
void *clientData; // 扩大数据
} aeFileEvent;
Redis 在操作系统提供的 epoll 对象根底上又封装了一个 eventLoop 进去,所以创立的时候是先申请和创立 eventLoop。
// file: src/ae.c
/**
* 创立 aeEventLoop 构造体
*
* @param setsize
*/
aeEventLoop *aeCreateEventLoop(int setsize) {
aeEventLoop *eventLoop;
// ... 省略局部代码
eventLoop = zmalloc(sizeof(*eventLoop))
// 未来的各种回调事件就都会存在这里
// eventLoop->events 是一个指针 指向数组 元素类型:aeFileEvent 大小:setsize
eventLoop->events = zmalloc(sizeof(aeFileEvent)*setsize);
eventLoop->fired = zmalloc(sizeof(aeFiredEvent)*setsize);
// ... 省略局部代码
// 创立 epoll
aeApiCreate(eventLoop)
}
// file: src/ae_epoll.c
static int aeApiCreate(aeEventLoop *eventLoop) {aeApiState *state = zmalloc(sizeof(aeApiState));
// ... 省略局部代码
// 真正创立 epoll
// 调 linux epoll_create()函数 创立 epoll
state->epfd = epoll_create(2024); /* 1024 is just a hint for the kernel */
// ... 省略局部代码
eventLoop->apidata = state;
return 0;
}
(3.2) 注册事件及回调函数 -aeCreateFileEvent
// file: src/ae.c
/**
* @param *eventLoop
* @param fd
* @param mask 0: 未注册事件 1: 描述符可读时触发 2: 描述符可写时触发 3:
* @param *proc aeFileProc 类型 入参传的是 acceptTcpHandler 函数 回调时会用到这个函数
* @param *clientData
*/
int aeCreateFileEvent(aeEventLoop *eventLoop, int fd, int mask,
aeFileProc *proc, void *clientData)
{if (fd >= eventLoop->setsize) {
errno = ERANGE;
return AE_ERR;
}
// 从 aeFileEvent 事件数组里取出一个文件事件构造
aeFileEvent *fe = &eventLoop->events[fd];
// 监听指定 fd 的指定事件
if (aeApiAddEvent(eventLoop, fd, mask) == -1)
return AE_ERR;
// 设置文件事件类型 以及事件的处理器
fe->mask |= mask;
if (mask & AE_READABLE) fe->rfileProc = proc; // 设置读事件回调
if (mask & AE_WRITABLE) fe->wfileProc = proc; // 设置写事件回调
// 公有数据
fe->clientData = clientData;
if (fd > eventLoop->maxfd)
eventLoop->maxfd = fd;
return AE_OK;
}
//file: src/ae_epoll.c
// 增加事件
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
aeApiState *state = eventLoop->apidata;
struct epoll_event ee = {0}; /* avoid valgrind warning */
/* If the fd was already monitored for some event, we need a MOD
* operation. Otherwise we need an ADD operation. */
int op = eventLoop->events[fd].mask == AE_NONE ?
EPOLL_CTL_ADD : EPOLL_CTL_MOD;
// ...
// epoll_ctl 增加事件
epoll_ctl(state->epfd,op,fd,&ee);
return 0;
}
这个函数其实就是对 epoll_ctl 的一个封装。次要就是理论执行 epoll_ctl EPOLL_CTL_ADD。
每一个 eventLoop->events 元素都指向一个 aeFileEvent 对象。
在这个对象上,设置了三个要害货色
rfileProc:读事件回调
wfileProc:写事件回调
clientData:一些额定的扩大数据
未来 当 epoll_wait
发现某个 fd
上有事件产生的时候,这样 redis 首先依据 fd 到 eventLoop->events 中查找 aeFileEvent 对象,而后再看 rfileProc、wfileProc 就能够找到读、写回调处理函数。
listen fd 对应的读回调函数 rfileProc 事实上就被设置成了 acceptTcpHandler,公有数据 client_data 也为 null。
(3.3) 获取就绪 socket 并处理事件 -aeMain()
// file: src/ae.c
/**
* 循环接管申请
*
* @param *eventLoop
*/
void aeMain(aeEventLoop *eventLoop) {
eventLoop->stop = 0;
// 循环
while (!eventLoop->stop) {
// 处理事件
aeProcessEvents(eventLoop, AE_ALL_EVENTS|
AE_CALL_BEFORE_SLEEP|
AE_CALL_AFTER_SLEEP);
}
}
// 处理事件 返回解决完的事件个数
0 不做任何解决
1 AE_FILE_EVENTS 解决文件事件
2 AE_TIME_EVENTS 解决工夫事件
3 AE_ALL_EVENTS 所有事件
4 AE_DONT_WAIT
8 AE_CALL_BEFORE_SLEEP
16 AE_CALL_AFTER_SLEEP
int aeProcessEvents(aeEventLoop *eventLoop, int flags)
{
int processed = 0, numevents;
struct timeval tv, *tvp;
// 如果 eventLoop 解决前的函数不为空,就执行
if (eventLoop->beforesleep != NULL && flags & AE_CALL_BEFORE_SLEEP)
eventLoop->beforesleep(eventLoop);
// 调用多路复用 API,仅在超时或某些事件触发时返回
// 解决文件事件,阻塞工夫由 tvp 决定
numevents = aeApiPoll(eventLoop, tvp);
// 解决后的函数不为空
/* After sleep callback. */
if (eventLoop->aftersleep != NULL && flags & AE_CALL_AFTER_SLEEP)
eventLoop->aftersleep(eventLoop);
for (j = 0; j < numevents; j++) {// 先从 eventLoop->fired[j]获取已就绪事件构造体(aeFiredEvent) 获取 fd 后 再从 eventLoop->events 注册事件里获取对应的事件构造体(aeFileEvent)
aeFileEvent *fe = &eventLoop->events[eventLoop->fired[j].fd];
// ...
// 如果可读
if (!invert && fe->mask & mask & AE_READABLE) {
// 调用读事件回调函数 对应 acceptTcpHandler
fe->rfileProc(eventLoop,fd,fe->clientData,mask);
fired++;
fe = &eventLoop->events[fd]; /* Refresh in case of resize. */
}
// 如果可写 触发写事件
if (fe->mask & mask & AE_WRITABLE) {if (!fired || fe->wfileProc != fe->rfileProc) {
// 调用写事件回调函数 对应 acceptTcpHandler
fe->wfileProc(eventLoop,fd,fe->clientData,mask);
fired++;
}
}
processed++;
}
return processed; /* return the number of processed file/time events */
}
// file: src/ae_poll.c
/**
* 获取就绪事件
*
* @param *eventLoop
* @param *tvp
*/
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
// 期待事件
aeApiState *state = eventLoop->apidata;
int retval, numevents = 0;
// 调 linux epoll_wait 函数来获取已就绪 socket
retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,
tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);
// ...
return numevents;
}
aeProcessEvents 就是调用 epoll_wait 来获取就绪 socket。
当发现有某个 socket 上数据就绪当前,则调用当时注册的事件处理器函数 rfileProc 和 wfileProc。
参考资料
Redis 高性能 IO 模型 https://weikeqin.com/2022/01/…
Redis 源码分析与实战 学习笔记 Day9 09 | Redis 事件驱动框架(上):何时应用 select、poll、epoll?https://time.geekbang.org/col…