共计 21565 个字符,预计需要花费 54 分钟才能阅读完成。
(1) Redis 里缓存有哪些淘汰策略
内存淘汰策略 | 解释 | 备注 |
---|---|---|
noeviction | 不进行数据淘汰 | |
allkeys-random | 在所有 key 里随机筛选数据 | |
allkeys-lru | 在所有 key 里筛选最近最久未应用的数据 | |
allkeys-lfu | 在所有 key 里筛选最近起码应用的数据 | Redis 4.0 新增 |
volatile-ttl | 在有过期工夫 key 里依据过期工夫的先后筛选 | |
volatile-random | 在有过期工夫 key 里随机筛选数据 | |
volatile-lru | 在有过期工夫 key 里筛选最近最久未应用的数据 | |
volatile-lfu | 在有过期工夫 key 里筛选最近起码应用的数据 | Redis 4.0 新增 |
lru (Least Recently Used) 最近最久未应用
lfu (Least Frequently Used) 最近起码应用
在 redis3.0 之前,默认淘汰策略是volatile-lru
;在 redis3.0 及之后(包含 3.0),默认淘汰策略是noeviction
。
在 3.0 及之后的版本,Redis 在应用的内存空间超过 maxmemory 值时,并不会淘汰数据。
对应到 Redis 缓存,也就是指,一旦缓存被写满了,再有写申请来时,Redis 不再提供服务,而是间接返回谬误。
(1.1) Redis 内存淘汰机制如何启用
Redis 的内存淘汰机制是如何启用近似 LRU 算法的
和 Redis 配置文件 redis.conf
中的两个配置参数无关:
maxmemory
,该配置项设定了 Redis server 能够应用的最大内存容量,一旦 server 应用的理论内存量超出该阈值时,server 就会依据 maxmemory-policy 配置项定义的策略,执行内存淘汰操作;
maxmemory-policy
,该配置项设定了 Redis server 的内存淘汰策略,次要包含近似 LRU 算法、LFU 算法、按 TTL 值淘汰和随机淘汰等几种算法。
(2) 缓存淘汰算法 / 页面置换算法原理
(2.1) LRU
LRU 算法背地的想法十分奢侈:它认为刚刚被拜访的数据,必定还会被再次拜访。
抉择最近最久未被应用的数据进行淘汰。
长处:
简略、高效
有余:
可能造成缓存净化。
缓存净化
:在一些场景下,有些数据被拜访的次数非常少,甚至只会被拜访一次。当这些数据服务完拜访申请后,如果还持续留存在缓存中的话,就只会白白占用缓存空间。
典型场景:全表扫描,对所有数据进行一次读取,每个数据都被读取到了,
(2.2) LFU
记录数据被拜访的频率,抉择在最近应用起码的数据进行淘汰。
(3) Redis 里缓存淘汰算法实现
(3.1) Redis-LRU
LRU 算法在理论实现时,须要用链表治理所有的缓存数据,这会带来额定的空间开销。
而且,当有数据被拜访时,须要在链表上把该数据挪动到 MRU 端,如果有大量数据被拜访,就会带来很多链表挪动操作,会很耗时,进而会升高 Redis 性能。
在 Redis 中,LRU 算法被做了简化,以加重数据淘汰对缓存性能的影响。
Redis 并没有为所有的数据保护一个全局的链表,而是通过随机采样形式,选取肯定数量(例如 100 个)的数据放入候选汇合,后续在候选汇合中依据 lru 字段值的大小进行筛选。
(3.2) Redis-LFU
LFU 缓存策略是在 LRU 策略根底上,为每个数据减少了一个计数器,来统计这个数据的拜访次数。
当应用 LFU 策略筛选淘汰数据时,首先会依据数据的拜访次数进行筛选,把拜访次数最低的数据淘汰出缓存。
如果两个数据的拜访次数雷同,LFU 策略再比拟这两个数据的拜访时效性,把间隔上一次拜访工夫更久的数据淘汰出缓存。
Redis 在实现 LFU 策略的时候,只是把原来 24bit 大小的 lru 字段,又进一步拆分成了两局部。
ldt 值:lru 字段的前 16bit,示意数据的拜访工夫戳;
counter 值:lru 字段的后 8bit,示意数据的拜访次数。
在实现 LFU 策略时,Redis 并没有采纳数据每被拜访一次,就给对应的 counter 值加 1 的计数规定,而是采纳了一个更优化的计数规定。
LFU 策略实现的计数规定是:每当数据被拜访一次时,首先,用计数器以后的值乘以配置项 lfu_log_factor 再加 1,再取其倒数,失去一个 p 值;而后,把这个 p 值和一个取值范畴在(0,1)间的随机数 r 值比大小,只有 p 值大于 r 值时,计数器才加 1。
double r = (double)rand()/RAND_MAX;
...
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;
(4) 源码解读
(4.1) 全局 LRU 时钟值的计算
LRU 算法须要晓得数据的最近一次拜访工夫。因而,Redis 设计了 LRU 时钟来记录数据每次拜访的工夫戳。
// file: src/server.h
/*
* redis 对象
*/
typedef struct redisObject {
unsigned type:4; // 数据类型(string/list/hash/set/zset 等)unsigned encoding:4; // 编码方式
unsigned lru:LRU_BITS; // LRU 工夫(绝对于全局 lru_clock)
// 或 LFU 数据(低 8 位保留频率 和 高 16 位保留拜访工夫)。// LRU_BITS 为 24 个 bits
int refcount; // 援用计数 4 字节
void *ptr; // 指针 指向对象的值 8 字节
} robj;
// file: src/server.c
void initServerConfig(void) {
// 计算全局 LRU 时钟值
server.lruclock = getLRUClock();}
// file: src/evict.c
/*
* 依据时钟分辨率返回 LRU 时钟。* 这是一个缩小位格局的工夫,可用于设置和查看 redisObject 构造的 object->lru 字段。*/
unsigned int getLRUClock(void) {// mstime()是毫秒工夫戳 // mstime()/1000= 秒级工夫戳
// 与运算 保障值 <= LRU_CLOCK_MAX
return (mstime()/LRU_CLOCK_RESOLUTION) & LRU_CLOCK_MAX;
}
从代码能够看出,LRU 时钟精度是 1000 毫秒,也就是 1 秒。
#define LRU_BITS 24
// obj->lru 的最大值 // LRU_CLOCK_MAX = 1^24 - 1
#define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) /* Max value of obj->lru */
// LRU 时钟分辨率(毫秒)
#define LRU_CLOCK_RESOLUTION 1000 /* LRU clock resolution in ms */
// file: src/server.c
/*
* 返回 UNIX 毫秒工夫戳
* Return the UNIX time in milliseconds
*/
mstime_t mstime(void) {return ustime()/1000;
}
// file: src/server.c
/*
* 返回 UNIX 微秒工夫戳
* Return the UNIX time in microseconds
*/
long long ustime(void) {
struct timeval tv;
long long ust;
gettimeofday(&tv, NULL);
ust = ((long long)tv.tv_sec)*1000000;
ust += tv.tv_usec;
return ust;
}
(4.2) 在运行过程中 LRU 时钟值是如何更新的
和 Redis server 在事件驱动框架中,定期运行的工夫事件所对应的 serverCron 函数无关。
serverCron 函数作为工夫事件的回调函数,自身会依照肯定的频率周期性执行,其频率值是由 Redis 配置文件 redis.conf 中的 hz 配置项决定的。
hz 配置项的默认值是 10,这示意 serverCron 函数会每 100 毫秒 (1 秒 / 10 = 100 毫秒) 运行一次。
// file: src/server.c
/* This is our timer interrupt, called server.hz times per second.
* Here is where we do a number of things that need to be done asynchronously.
* For instance:
*
* - Active expired keys collection (it is also performed in a lazy way on
* lookup).
* - Software watchdog.
* - Update some statistic.
* - Incremental rehashing of the DBs hash tables.
* - Triggering BGSAVE / AOF rewrite, and handling of terminated children.
* - Clients timeout of different kinds.
* - Replication reconnection.
* - Many more...
*
* Everything directly called here will be called server.hz times per second,
* so in order to throttle execution of things we want to do less frequently
* a macro is used: run_with_period(milliseconds) {....}
*/
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
/* We have just LRU_BITS bits per object for LRU information.
* So we use an (eventually wrapping) LRU clock.
*
* Note that even if the counter wraps it's not a big problem,
* everything will still work but some object will appear younger
* to Redis. However for this to happen a given object should never be
* touched for all the time needed to the counter to wrap, which is
* not likely.
*
* Note that you can change the resolution altering the
* LRU_CLOCK_RESOLUTION define. */
// 默认状况下,每 100 毫秒调用 getLRUClock 函数更新一次全局 LRU 时钟值
server.lruclock = getLRUClock();}
这样一来,每个键值对就能够从全局 LRU 时钟获取最新的拜访工夫戳了。
(4.3) key-value-LRU 时钟值的初始化与更新
(4.3.1) key-LRU 时钟初始化
对于 key-value 来说,它的 LRU 时钟值最后是在这个键值对被创立的时候,进行初始化设置的,这个初始化操作是在 createObject 函数中调用的。
// file: src/object.c
/*
* 创立一个 redisObject 对象
*
* @param type redisObject 的类型
* @param *ptr 值的指针
*/
robj *createObject(int type, void *ptr) {
// 为 redisObject 构造体分配内存空间
robj *o = zmalloc(sizeof(*o));
// 省略局部代码
// 将 lru 字段设置为以后的 lruclock(分钟分辨率),或者 LFU 计数器。// 判断内存过期策略
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
// 对应 lfu
// LFU_INIT_VAL=5 对应二进制是 0101
// 或运算
o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
} else {
// 对应 lru
o->lru = LRU_CLOCK();}
return o;
}
(4.3.2) key-LRU 时钟更新
只有一个 key 被拜访了,它的 LRU 时钟值就会被更新。而当一个键值对被拜访时,拜访操作最终都会调用 lookupKey
函数。
// file: src/db.c
/*
* 低级 key 查找 API
* 实际上并没有间接从应该依赖 lookupKeyRead()、lookupKeyWrite()和 lookupKeyReadWithFlags()的命令实现中调用。*/
robj *lookupKey(redisDb *db, robj *key, int flags) {dictEntry *de = dictFind(db->dict,key->ptr);
// 如果节点存在
if (de) {
// 从节点里获取 redisObject
robj *val = dictGetVal(de);
/*
* 更新老化算法的拜访工夫。* 如果咱们有一个正在保留的子过程,请不要这样做,因为这会触发疯狂写入正本。*/
// 没有沉闷子过程 并且
if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
// 更新 lfu
updateLFU(val);
} else {
// 更新 lru 工夫
val->lru = LRU_CLOCK();}
}
return val;
} else {return NULL;}
}
(4.4) 近似 LRU 算法的理论执行
Redis 之所以实现近似 LRU 算法的目标,是为了缩小内存资源和操作工夫上的开销。
何时触发算法执行?
算法具体如何执行?
(4.4.1) 触发机会
近似 LRU 算法的次要逻辑是在 freeMemoryIfNeeded 函数中实现的
processCommand -> freeMemoryIfNeededAndSafe -> freeMemoryIfNeeded
(4.4.2) 近似 LRU 算法执行
次要分 3 大步
- 判断以后内存应用状况 -getMaxmemoryState
- 更新待淘汰的候选键值对汇合 -evictionPoolPopulate
- 抉择被淘汰的键值对并删除 -freeMemoryIfNeeded
// file: src/evict.c
/* This function is periodically called to see if there is memory to free
* according to the current "maxmemory" settings. In case we are over the
* memory limit, the function will try to free some memory to return back
* under the limit.
*
* The function returns C_OK if we are under the memory limit or if we
* were over the limit, but the attempt to free memory was successful.
* Otherwise if we are over the memory limit, but not enough memory
* was freed to return back under the limit, the function returns C_ERR. */
int freeMemoryIfNeeded(void) {
int keys_freed = 0;
/* By default replicas should ignore maxmemory
* and just be masters exact copies. */
if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;
size_t mem_reported, mem_tofree, mem_freed;
mstime_t latency, eviction_latency, lazyfree_latency;
long long delta;
int slaves = listLength(server.slaves);
int result = C_ERR;
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return C_OK;
// 如果以后内存使用量没有超过 maxmemory,返回
if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
return C_OK;
mem_freed = 0;
latencyStartMonitor(latency);
if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
goto cant_free; /* We need to free memory, but policy forbids. */
while (mem_freed < mem_tofree) {
int j, k, i;
static unsigned int next_db = 0;
sds bestkey = NULL;
int bestdbid;
redisDb *db;
dict *dict;
dictEntry *de;
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
struct evictionPoolEntry *pool = EvictionPoolLRU;
while(bestkey == NULL) {
unsigned long total_keys = 0, keys;
/* We don't want to make local-db choices when expiring keys,
* so to start populate the eviction pool sampling keys from
* every DB. */
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {bestkey = dictGetKey(de);
break;
} else {/* Ghost... Iterate again. */}
}
}
}
/* volatile-random and allkeys-random policy */
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
}
/* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* Same for CSC invalidation messages generated by signalModifiedKey.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
signalModifiedKey(NULL,db,keyobj);
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
/* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
/* Let's satisfy our stop condition. */
mem_freed = mem_tofree;
}
}
} else {goto cant_free; /* nothing to free... */}
}
result = C_OK;
cant_free:
/* We are here if we are not able to reclaim memory. There is only one
* last thing we can try: check if the lazyfree thread has jobs in queue
* and wait... */
if (result != C_OK) {latencyStartMonitor(lazyfree_latency);
while(bioPendingJobsOfType(BIO_LAZY_FREE)) {if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
result = C_OK;
break;
}
usleep(1000);
}
latencyEndMonitor(lazyfree_latency);
latencyAddSampleIfNeeded("eviction-lazyfree",lazyfree_latency);
}
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
return result;
}
(4.4.2.1) 判断以后内存应用状况 -getMaxmemoryState
// file: src/evict.c
/* Get the memory status from the point of view of the maxmemory directive:
* if the memory used is under the maxmemory setting then C_OK is returned.
* Otherwise, if we are over the memory limit, the function returns
* C_ERR.
*
* The function may return additional info via reference, only if the
* pointers to the respective arguments is not NULL. Certain fields are
* populated only when C_ERR is returned:
*
* 'total' total amount of bytes used.
* (Populated both for C_ERR and C_OK)
*
* 'logical' the amount of memory used minus the slaves/AOF buffers.
* (Populated when C_ERR is returned)
*
* 'tofree' the amount of memory that should be released
* in order to return back into the memory limits.
* (Populated when C_ERR is returned)
*
* 'level' this usually ranges from 0 to 1, and reports the amount of
* memory currently used. May be > 1 if we are over the memory
* limit.
* (Populated both for C_ERR and C_OK)
*/
int getMaxmemoryState(size_t *total, size_t *logical, size_t *tofree, float *level) {
size_t mem_reported, mem_used, mem_tofree;
/* Check if we are over the memory usage limit. If we are not, no need
* to subtract the slaves output buffers. We can just return ASAP. */
mem_reported = zmalloc_used_memory();
if (total) *total = mem_reported;
/* We may return ASAP if there is no need to compute the level. */
int return_ok_asap = !server.maxmemory || mem_reported <= server.maxmemory;
if (return_ok_asap && !level) return C_OK;
/* Remove the size of slaves output buffers and AOF buffer from the
* count of used memory. */
mem_used = mem_reported;
size_t overhead = freeMemoryGetNotCountedMemory();
mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
/* Compute the ratio of memory usage. */
if (level) {if (!server.maxmemory) {*level = 0;} else {*level = (float)mem_used / (float)server.maxmemory;
}
}
if (return_ok_asap) return C_OK;
/* Check if we are still over the memory limit. */
if (mem_used <= server.maxmemory) return C_OK;
/* Compute how much memory we need to free. */
mem_tofree = mem_used - server.maxmemory;
if (logical) *logical = mem_used;
if (tofree) *tofree = mem_tofree;
return C_ERR;
}
(4.4.2.2) 更新待淘汰的候选键值对汇合 -evictionPoolPopulate
// file: src/evict.c
/* This is an helper function for freeMemoryIfNeeded(), it is used in order
* to populate the evictionPool with a few entries every time we want to
* expire a key. Keys with idle time smaller than one of the current
* keys are added. Keys are always added if there are free entries.
*
* We insert keys on place in ascending order, so keys with the smaller
* idle time are on the left, and keys with the higher idle time on the
* right. */
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
int j, k, count;
dictEntry *samples[server.maxmemory_samples];
count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
for (j = 0; j < count; j++) {
unsigned long long idle;
sds key;
robj *o;
dictEntry *de;
de = samples[j];
key = dictGetKey(de);
/* If the dictionary we are sampling from is not the main
* dictionary (but the expires one) we need to lookup the key
* again in the key dictionary to obtain the value object. */
if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {if (sampledict != keydict) de = dictFind(keydict, key);
o = dictGetVal(de);
}
/* Calculate the idle time according to the policy. This is called
* idle just because the code initially handled LRU, but is in fact
* just a score where an higher score means better candidate. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {idle = estimateObjectIdleTime(o);
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
/* When we use an LRU policy, we sort the keys by idle time
* so that we expire keys starting from greater idle time.
* However when the policy is an LFU one, we have a frequency
* estimation, and we want to evict keys with lower frequency
* first. So inside the pool we put objects using the inverted
* frequency subtracting the actual frequency to the maximum
* frequency of 255. */
idle = 255-LFUDecrAndReturn(o);
} else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
/* In this case the sooner the expire the better. */
idle = ULLONG_MAX - (long)dictGetVal(de);
} else {serverPanic("Unknown eviction policy in evictionPoolPopulate()");
}
/* Insert the element inside the pool.
* First, find the first empty bucket or the first populated
* bucket that has an idle time smaller than our idle time. */
k = 0;
while (k < EVPOOL_SIZE &&
pool[k].key &&
pool[k].idle < idle) k++;
if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
/* Can't insert if the element is < the worst element we have
* and there are no empty buckets. */
continue;
} else if (k < EVPOOL_SIZE && pool[k].key == NULL) {/* Inserting into empty position. No setup needed before insert. */} else {
/* Inserting in the middle. Now k points to the first element
* greater than the element to insert. */
if (pool[EVPOOL_SIZE-1].key == NULL) {
/* Free space on the right? Insert at k shifting
* all the elements from k to end to the right. */
/* Save SDS before overwriting. */
sds cached = pool[EVPOOL_SIZE-1].cached;
memmove(pool+k+1,pool+k,
sizeof(pool[0])*(EVPOOL_SIZE-k-1));
pool[k].cached = cached;
} else {
/* No free space on right? Insert at k-1 */
k--;
/* Shift all elements on the left of k (included) to the
* left, so we discard the element with smaller idle time. */
sds cached = pool[0].cached; /* Save SDS before overwriting. */
if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
memmove(pool,pool+1,sizeof(pool[0])*k);
pool[k].cached = cached;
}
}
/* Try to reuse the cached SDS string allocated in the pool entry,
* because allocating and deallocating this object is costly
* (according to the profiler, not my fantasy. Remember:
* premature optimization bla bla bla. */
int klen = sdslen(key);
if (klen > EVPOOL_CACHED_SDS_SIZE) {pool[k].key = sdsdup(key);
} else {memcpy(pool[k].cached,key,klen+1);
sdssetlen(pool[k].cached,klen);
pool[k].key = pool[k].cached;
}
pool[k].idle = idle;
pool[k].dbid = dbid;
}
}
(4.4.2.3) 抉择被淘汰的键值对并删除 -freeMemoryIfNeeded
// file: src/evict.c
/* This function is periodically called to see if there is memory to free
* according to the current "maxmemory" settings. In case we are over the
* memory limit, the function will try to free some memory to return back
* under the limit.
*
* The function returns C_OK if we are under the memory limit or if we
* were over the limit, but the attempt to free memory was successful.
* Otherwise if we are over the memory limit, but not enough memory
* was freed to return back under the limit, the function returns C_ERR. */
int freeMemoryIfNeeded(void) {
int keys_freed = 0;
/* By default replicas should ignore maxmemory
* and just be masters exact copies. */
if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;
size_t mem_reported, mem_tofree, mem_freed;
mstime_t latency, eviction_latency, lazyfree_latency;
long long delta;
int slaves = listLength(server.slaves);
int result = C_ERR;
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return C_OK;
if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
return C_OK;
mem_freed = 0;
latencyStartMonitor(latency);
if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
goto cant_free; /* We need to free memory, but policy forbids. */
while (mem_freed < mem_tofree) {
int j, k, i;
static unsigned int next_db = 0;
sds bestkey = NULL;
int bestdbid;
redisDb *db;
dict *dict;
dictEntry *de;
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
struct evictionPoolEntry *pool = EvictionPoolLRU;
while(bestkey == NULL) {
unsigned long total_keys = 0, keys;
/* We don't want to make local-db choices when expiring keys,
* so to start populate the eviction pool sampling keys from
* every DB. */
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {bestkey = dictGetKey(de);
break;
} else {/* Ghost... Iterate again. */}
}
}
}
/* volatile-random and allkeys-random policy */
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
}
/* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* Same for CSC invalidation messages generated by signalModifiedKey.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
signalModifiedKey(NULL,db,keyobj);
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
/* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
/* Let's satisfy our stop condition. */
mem_freed = mem_tofree;
}
}
} else {goto cant_free; /* nothing to free... */}
}
result = C_OK;
cant_free:
/* We are here if we are not able to reclaim memory. There is only one
* last thing we can try: check if the lazyfree thread has jobs in queue
* and wait... */
if (result != C_OK) {latencyStartMonitor(lazyfree_latency);
while(bioPendingJobsOfType(BIO_LAZY_FREE)) {if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
result = C_OK;
break;
}
usleep(1000);
}
latencyEndMonitor(lazyfree_latency);
latencyAddSampleIfNeeded("eviction-lazyfree",lazyfree_latency);
}
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
return result;
}
参考资料
https://weikeqin.com/tags/redis/
Redis 源码分析与实战 学习笔记 Day15 15 | 为什么 LRU 算法原理和代码实现不一样?
https://time.geekbang.org/col…