Course
PyTorch 模型推理及多任务通用范式 课程 5:
- 给大家安利了大白老师之前的好文:对于 Yolo 系列算法的理论知识解读和实战训练代码。
- 依据 pytorch 模型推理的三板斧:数据预处理、数据进网络、数据后处理,逐行实现了 Yolox 的推理代码。
Assignment
必做题
- 本人找 2 张其余图,用 Yolox_s 进行指标检测,并注明输出尺寸和两个阈值。
思考题
- Yolox_s:用 time 模块和 for 循环,对”./images/1.jpg”间断推理 100 次,统计工夫开销。有 CUDA 的同学,改下代码:self.device=torch.device(‘cuda’),统计工夫开销。
- 有 CUDA 的同学,别离用 Yolox_tiny、Yolox_s、Yolox_m、Yolox_l、Yolox_x 对”./images/1.jpg”间断推理 100 次,统计工夫开销。
Solutions
Code
import torch
import torch.nn as nn
import torchvision
import numpy as np
import cv2
from models_yolox.visualize import vis
from models_yolox.yolo_head import YOLOXHead
from models_yolox.yolo_pafpn import YOLOPAFPN
import time
# write output image
def write_output(result, image, output):
if result is not None:
bboxes, scores, labels = result
image = vis(image, bboxes, scores, labels, label_names)
text1 = 'image size : {}*{}'.format(model_detect.w, model_detect.h)
text2 = 'conf threshold : {}'.format(model_detect.conf_threshold)
text3 = 'nms threshold : {}'.format(model_detect.nms_threshold)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image, text1, (10, 20), font, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(image, text2, (10, 50), font, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(image, text3, (10, 80), font, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
cv2.imwrite(output, image)
# run a model multiple times
def run_evl(times, model, device, image):
image = cv2.imread(image)
# CPU run 100 times
model_detect = ModelPipline(device=device, model_name=model)
t_all=0
for i in range(times):
t_start = time.time()
model_detect.predict(image)
t_end = time.time()
t_all += t_end - t_start
print('{} run model {} {} time lapse: {:.4f} seconds.'.format(device, model, times, t_all))
class YOLOX(nn.Module):
def __init__(self, num_classes, depth=0.33, width=0.5, in_channels=[256, 512, 1024]):
super().__init__()
#yolox_s by default
self.backbone = YOLOPAFPN(depth=depth, width=width, in_channels=in_channels)
self.head = YOLOXHead(num_classes=num_classes, width=width, in_channels=in_channels)
def forward(self, x):
fpn_outs = self.backbone(x)
outputs = self.head(fpn_outs)
return outputs
class ModelPipline(object):
def __init__(self, device=torch.device('cuda'), model_name='yolox_s'):
# 进入模型的图片大小:为数据预处理和后处理做筹备
self.inputs_size = (640, 640) # (h,w)
# CPU or CUDA:为数据预处理和模型加载做筹备
self.device = device
# 后处理的阈值
self.conf_threshold = 0.5
self.nms_threshold = 0.4
# 标签载入
label_names = open('./labels/coco_label.txt', 'r').readlines()
self.label_names = [line.strip('\n') for line in label_names]
# image size
self.w = 0
self.h = 0
# for model selection
self.model_info = {'yolox_tiny': [0.33, 0.375, './weights/yolox_tiny_coco.pth.tar'],
'yolox_s': [0.33, 0.5, './weights/yolox_s_coco.pth.tar'],
'yolox_m': [0.67, 0.75, './weights/yolox_m_coco.pth.tar'],
'yolox_l': [1.0, 1.0, './weights/yolox_l_coco.pth.tar'],
'yolox_x': [1.33, 1.25, './weights/yolox_x_coco.pth.tar'],
}
# 载入模型构造和模型权重
self.num_classes = 80
self.model = self.get_model(model_name)
def predict(self, image):
# 数据预处理
inputs, r = self.preprocess(image)
# 数据进网络
outputs = self.model(inputs)
# 数据后处理
results = self.postprocess(outputs, r)
return results
def get_model(self, model_name):
model_info = self.model_info[model_name]
depth = model_info[0]
width = model_info[1]
path = model_info[2]
if model_name == 'yolox_tiny':
self.inputs_size = (416, 416)
model = YOLOX(self.num_classes, depth, width)
pretrained_state_dict = torch.load(path, map_location=lambda storage, loc: storage)["model"]
model.load_state_dict(pretrained_state_dict, strict=True)
model.to(self.device)
model.eval()
return model
def preprocess(self, image):
# 原图尺寸
h, w = image.shape[:2]
# to print image size
self.h = h
self.w = w
# 生成一张 w=h=640 的 mask,数值全是 114
padded_img = np.ones((self.inputs_size[0], self.inputs_size[1], 3)) * 114.0
# 计算原图的长边缩放到 640 所须要的比例
r = min(self.inputs_size[0] / h, self.inputs_size[1] / w)
# 对原图做等比例缩放,使得长边 =640
resized_img = cv2.resize(image, (int(w * r), int(h * r)), interpolation=cv2.INTER_LINEAR).astype(np.float32)
# 将缩放后的原图填充到 640×640 的 mask 的左上方
padded_img[: int(h * r), : int(w * r)] = resized_img
# BGR——>RGB
padded_img = padded_img[:, :, ::-1]
# 归一化和标准化,和训练时保持一致
inputs = padded_img / 255
inputs = (inputs - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
## 以下是图像工作的通用解决
# (H,W,C) ——> (C,H,W)
inputs = inputs.transpose(2, 0, 1)
# (C,H,W) ——> (1,C,H,W)
inputs = inputs[np.newaxis, :, :, :]
# NumpyArray ——> Tensor
inputs = torch.from_numpy(inputs)
# dtype float32
inputs = inputs.type(torch.float32)
# 与 self.model 放在雷同硬件上
inputs = inputs.to(self.device)
return inputs, r
def postprocess(self, prediction, r):
# prediction.shape=[1,8400,85],上面先将 85 中的前 4 列进行转换,从 xc,yc,w,h 变为 x0,y0,x1,y1
box_corner = prediction.new(prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
# 只解决单张图
image_pred = prediction[0]
# class_conf.shape=[8400,1], 求每个 anchor 在 80 个类别中的最高分数。class_pred.shape=[8400,1], 每个 anchor 的 label index。class_conf, class_pred = torch.max(image_pred[:, 5: 5 + self.num_classes], 1, keepdim=True)
conf_score = image_pred[:, 4].unsqueeze(dim=1) * class_conf
conf_mask = (conf_score >= self.conf_threshold).squeeze()
# detections.shape=[8400,6],别离是 x0 ,y0, x1, y1, obj_score*class_score, class_label
detections = torch.cat((image_pred[:, :4], conf_score, class_pred.float()), 1)
# 将 obj_score*class_score > conf_thre 筛选进去
detections = detections[conf_mask]
# 通过阈值筛选后,如果没有残余指标则完结
if not detections.size(0):
return None
# NMS
nms_out_index = torchvision.ops.batched_nms(detections[:, :4], detections[:, 4], detections[:, 5],
self.nms_threshold)
detections = detections[nms_out_index]
# 把坐标映射回原图
detections = detections.data.cpu().numpy()
bboxes = (detections[:, :4] / r).astype(np.int64)
scores = detections[:, 4]
labels = detections[:, 5].astype(np.int64)
return bboxes, scores, labels
if __name__ == '__main__':
model_detect = ModelPipline(torch.device('cuda'), 'yolox_s')
label_names = model_detect.label_names
# detect image 2
image = cv2.imread('./images/2.jpg')
result = model_detect.predict(image)
write_output(result, image, './demos/2.jpg')
# detect image 3
image = cv2.imread('./images/3.jpg')
result = model_detect.predict(image)
write_output(result, image, './demos/3.jpg')
# get time lapse of 100 iteration
run_evl(100, 'yolox_s', torch.device('cpu'), './images/1.jpg')
run_evl(100, 'yolox_tiny', torch.device('cuda'), './images/1.jpg')
run_evl(100, 'yolox_s', torch.device('cuda'), './images/1.jpg')
run_evl(100, 'yolox_m', torch.device('cuda'), './images/1.jpg')
run_evl(100, 'yolox_l', torch.device('cuda'), './images/1.jpg')
run_evl(100, 'yolox_x', torch.device('cuda'), './images/1.jpg')
必做题
- 提交 2 张图的检测成果,并注明输出尺寸和两个阈值。
图一
图二
思考题
- CPU 推理和 CUDA 推理,各自的工夫开销。
运行后果:
cpu run model yolox_s 100 time lapse: 13.2529 seconds.
cuda run model yolox_s 100 time lapse: 3.6188 seconds.
GPU 显著比 CPU 运算快。 - 不同 Backbone 各自的工夫开销。
运行后果:
cuda run model yolox_tiny 100 time lapse: 2.5452 seconds.
cuda run model yolox_s 100 time lapse: 3.6188 seconds.
cuda run model yolox_m 100 time lapse: 4.0251 seconds.
cuda run model yolox_l 100 time lapse: 4.7148 seconds.
cuda run model yolox_x 100 time lapse: 6.5571 seconds.
模型越大工夫开销越大。
学习心得
- 这次课程对你的帮忙有哪些?技术上、学习办法上、思路上等都行,随便施展。
很久没写过作业了,督促了我写点货色,相熟一下之前不器重的细节。推理通用范式有实用价值,后续能够用在试验代码里。 - 对课程的优化改良有什么倡议?内容上、流程上、模式上等都行,随便施展。
本课程给我的感觉是老师们很尽心,内容丰盛,解说分明,有播种。但限于文字的模式,看得出来一些常识老师想讲但没法讲。心愿当前能录视频对着画板写写画画的讲,这样老师讲的分明,学生学得明确。另外心愿授课内容和代码能更贴近生产一线,多一些业界实际,能带入一些偏日常工作可能遇到的问题去思考和解决是最好的了。 - 最好能够附上本人所处的阶段,比方:学生,接触 AI 一年;退职,3 年 AI 我的项目教训 等。
自己研一,接触深度学习不到一年,课题是机器视觉相干。