共计 20791 个字符,预计需要花费 52 分钟才能阅读完成。
前言
自从 WonderTrader 实现了 HFT
策略引擎以来,始终都没有工夫彻底的将高频策略研发、回测、仿真、实盘整个流程彻底走通一遍。所以趁着最近公司要上高频的机会,笔者基于 WonderTrader 把高频策略的利用彻底梳理了一遍。
本文的次要目标就是帮忙用户初步理解 WonderTrader
的HFT
引擎上如何开发策略的。
平台筹备
之前实盘框架下的 HFT
引擎曾经根本实现,然而回测框架下的 HFT
策略的反对因为事件太多始终没有欠缺。这次彻底梳理 HFT
引擎,正好把回测局部也欠缺了一下。HFT
回测引擎欠缺之后,WonderTrader也正好公布一个新版本v0.6.0。
v0.6.0 更新要点
CTA
引擎设置指标仓位时,同时订阅tick
数据,次要针对标的不确定的策略,例如截面因子CTA
策略CTA
回测引擎中,输入的平仓明细中新增“最大潜在收益”和“最大潜在亏损”两个字段HFT
引擎的回测进行了一次彻底的整顿实现,根本满足了HFT
策略回测的需要(已测试)- 初步实现了
HFT
引擎对股票Level2
数据(orderqueue
,orderdetail
,transaction
)的拜访接口WtPorter
和WtBtPorter
两个 C 接口粘合模块,初步实现了 C 接口对股票Level2
数据的反对
高频模型介绍
本文采纳的高频模型,源自Darryl Shen(Linacre College University of Oxford)于 2015 年 5 月 27 日发表的《Order Imbalance Based Strategy in High Frequency Trading》一文(网络上能够找到)。
该模型基于 L
笔tick
数据中的委托量的不均衡因子、委比因子以及中间价回归因子三个因子,预测 t0
时刻之后的 k
笔tick
数据的中间价的均价变动量,并以此构建 线性模型。通过线性回归,失去各个因子的系数。线性方程如下:
方程中各个符号的具体含意,请感兴趣的读者自行检索。该文中应用 2014 年 IF
主力合约全年的 tick
进行回测,每次进出场以 1 手股指为单位,能够实现 92.6% 的胜率,最优参数下,年化夏普率能够达到7.243,日均P&L 在58600元。
模型实现
有了模型当前,咱们开始来编写代码实现。因为本文旨在介绍 HFT
策略开发的流程,为了升高读者了解难度,策略都采纳 Python
编写。
策略框架介绍
首先咱们来看一下一个高频策略的根本构造:
class BaseHftStrategy:
'''
HFT 策略根底类,所有的策略都从该类派生 \n
蕴含了策略的根本开发框架
'''
def __init__(self, name):
self.__name__ = name
def name(self):
return self.__name__
def on_init(self, context:HftContext):
'''
策略初始化,启动的时候调用 \n
用于加载自定义数据 \n
@context 策略运行上下文
'''
return
def on_tick(self, context:HftContext, stdCode:str, newTick:dict):
'''
Tick 数据进来时调用 \n
@context 策略运行上下文 \n
@stdCode 合约代码 \n
@newTick 最新 Tick
'''
return
def on_order_detail(self, context:HftContext, stdCode:str, newOrdQue:dict):
'''
逐笔委托数据进来时调用 \n
@context 策略运行上下文 \n
@stdCode 合约代码 \n
@newOrdQue 最新逐笔委托
'''
return
def on_order_queue(self, context:HftContext, stdCode:str, newOrdQue:dict):
'''
委托队列数据进来时调用 \n
@context 策略运行上下文 \n
@stdCode 合约代码 \n
@newOrdQue 最新委托队列
'''
return
def on_transaction(self, context:HftContext, stdCode:str, newTrans:dict):
'''
逐笔成交数据进来时调用 \n
@context 策略运行上下文 \n
@stdCode 合约代码 \n
@newTrans 最新逐笔成交
'''
return
def on_bar(self, context:HftContext, stdCode:str, period:str, newBar:dict):
'''
K 线闭合时回调
@context 策略上下文 \n
@stdCode 合约代码
@period K 线周期
@newBar 最新闭合的 K 线
'''
return
def on_channel_ready(self, context:HftContext):
'''
交易通道就绪告诉 \n
@context 策略上下文 \n
'''
return
def on_channel_lost(self, context:HftContext):
'''
交易通道失落告诉 \n
@context 策略上下文 \n
'''
return
def on_entrust(self, context:HftContext, localid:int, stdCode:str, bSucc:bool, msg:str, userTag:str):
'''
下单后果回报
@context 策略上下文 \n
@localid 本地订单 id\n
@stdCode 合约代码 \n
@bSucc 下单后果 \n
@mes 下单后果形容
'''
return
def on_order(self, context:HftContext, localid:int, stdCode:str, isBuy:bool, totalQty:float, leftQty:float, price:float, isCanceled:bool, userTag:str):
'''
订单回报
@context 策略上下文 \n
@localid 本地订单 id\n
@stdCode 合约代码 \n
@isBuy 是否买入 \n
@totalQty 下单数量 \n
@leftQty 残余数量 \n
@price 下单价格 \n
@isCanceled 是否已撤单
'''
return
def on_trade(self, context:HftContext, localid:int, stdCode:str, isBuy:bool, qty:float, price:float, userTag:str):
'''
成交回报
@context 策略上下文 \n
@stdCode 合约代码 \n
@isBuy 是否买入 \n
@qty 成交数量 \n
@price 成交价格
'''
return
整个策略的构造大抵能够分为四块:
- 策略自身的回调
- 行情数据的回调
- 交易通道的回调
- 交易回报的回调
其中行情数据的回调,次要包含 on_tick
、on_bar
和level2
数据回调,本文中只须要关注 on_tick
即可;交易通道的回调,次要是告诉策略交易通道的连贯和断开事件;交易回报的回调,次要是订单回报、成交回报以及下单回报。
参数设计
依据模型的逻辑,咱们设置回溯 tick
数为5,中间价变动的阈值为0.3,那么咱们便能够将策略参数设计如下:
'''交易参数'''
self.__code__ = code #交易合约
self.__expsecs__ = expsecs #订单超时秒数,用于管制超时撤单
self.__freq__ = freq #交易频率管制,指定工夫内限度信号数,单位秒
self.__lots__ = lots #单次交易手数
self.count = count #回溯 tick 条数
self.beta_0 = beta_0 #常量系数 + 残差
self.beta_r = beta_r #中间价回归因子系数
self.threshold = threshold #中间价变动阈值
self.beta_oi = beta_oi #成交量不均衡因子系数序列
self.beta_rou = beta_rou #委比因子系数序列
self.active_secs = active_secs #交易工夫区间
self.stoppl = stoppl #止盈止损配置
外围逻辑
在大抵理解了 HFT
策略的构造当前,咱们就能够开始来编码了。整个策略的外围逻辑,集中在 on_tick
回调中,次要就是上述模型的计算,代码如下:
hisTicks = context.stra_get_ticks(self.__code__, self.count + 1)
if hisTicks.size != self.count+1:
return
if (len(newTick["askprice"]) == 0) or (len(newTick["bidprice"]) == 0):
return
spread = newTick["askprice"][0] - newTick["bidprice"][0]
total_OIR = 0.0
total_rou = 0.0
# 计算不均衡因子和委比因子的累加之和
for i in range(1, self.count + 1):
prevTick = hisTicks.get_tick(i-1)
curTick = hisTicks.get_tick(i)
lastBidPx = self.get_price(prevTick, -1)
lastAskPx = self.get_price(prevTick, 1)
lastBidQty = prevTick["bidqty"][0] if len(prevTick["bidqty"]) > 0 else 0
lastAskQty = prevTick["askqty"][0] if len(prevTick["askqty"]) > 0 else 0
curBidPx = self.get_price(curTick, -1)
curAskPx = self.get_price(curTick, 1)
curBidQty = curTick["bidqty"][0] if len(curTick["bidqty"]) > 0 else 0
curAskQty = curTick["askqty"][0] if len(curTick["askqty"]) > 0 else 0
delta_vb = 0.0
delta_va = 0.0
if curBidPx < lastBidPx:
delta_vb = 0.0
elif curBidPx == lastBidPx:
delta_vb = curBidQty - lastBidQty
else:
delta_vb = curBidQty
if curAskPx < lastAskPx:
delta_va = curAskQty
elif curAskPx == lastAskPx:
delta_va = curAskQty - lastAskQty
else:
delta_va = 0.0
voi = delta_vb - delta_va
total_OIR += self.beta_oi[i-1]*voi/spread
#计算委比
rou = (curBidQty - curAskQty)/(curBidQty + curAskQty)
total_rou += self.beta_rou[i-1]*rou/spread
prevTick = hisTicks.get_tick(-2)
# t- 1 时刻的中间价
prevMP = (self.get_price(prevTick, -1) + self.get_price(prevTick, 1))/2
# 最新的中间价
curMP = (newTick["askprice"][0] + newTick["bidprice"][0])/2
# 两个快照之间的成交均价
if newTick["volumn"] != 0:
avgTrdPx = newTick["turn_over"]/newTick["volumn"]/self.__comm_info__.volscale
elif self._last_atp__!= 0:
avgTrdPx = self._last_atp__
else:
avgTrdPx = curMP
self._last_atp__ = avgTrdPx
# 计算中间价回归因子
curR = avgTrdPx - (prevMP + curMP) / 2
# 计算预期中间价变动量
efpc = self.beta_0 + total_OIR + total_rou + self.beta_r * curR / spread
if efpc >= self.threshold:
targetPos = self.__lots__
diffPos = targetPos - curPos
if diffPos != 0.0:
targetPx = newTick["askprice"][0]
ids = context.stra_buy(self.__code__, targetPx, abs(diffPos), "enterlong")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
self.__last_entry_time__ = now
self._max_dyn_prof = 0
self._max_dyn_loss = 0
elif efpc <= -self.threshold:
targetPos = -self.__lots__
diffPos = targetPos - curPos
if diffPos != 0:
targetPx = newTick["bidprice"][0]
ids = context.stra_sell(self.__code__, targetPx, abs(diffPos), "entershort")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
self.__last_entry_time__ = now
self._max_dyn_prof = 0.0
self._max_dyn_loss = 0.0
止盈止损逻辑
然而对于高频策略,除了外围的进出场逻辑之外,止盈止损逻辑 也是十分重要的一部分。本文中的策略采纳 固定点位止损 + 跟踪止盈 来作为止盈止损逻辑,代码如下:
# 止盈止损逻辑
if curPos != 0 and self.stoppl["active"]:
isLong = (curPos > 0)
# 首先获取最新的价格,calc_price 为 0 的话,应用对手价计算浮盈,calc_price 为 1 的话,应用最新价计算浮盈
price = 0
if self.stoppl["calc_price"] == 0:
price = self.get_price(newTick, -1) if isLong else self.get_price(newTick, 1)
else:
price = newTick["price"]
#而后计算浮动盈亏的跳数
diffTicks = (price - self._last_entry_price)*(1 if isLong else -1) / self.__comm_info__.pricetick
if diffTicks > 0:
self._max_dyn_prof = max(self._max_dyn_prof, diffTicks)
else:
self._max_dyn_loss = min(self._max_dyn_loss, diffTicks)
bNeedExit = False
usertag = ''stop_ticks = self.stoppl["stop_ticks"]
track_threshold = self.stoppl["track_threshold"]
fallback_boundary = self.stoppl["fallback_boundary"]
if diffTicks <= stop_ticks:
context.stra_log_text("浮亏 %.0f 超过 %d 跳,止损离场" % (diffTicks, stop_ticks))
bNeedExit = True
usertag = "stoploss"
elif self._max_dyn_prof >= track_threshold and diffTicks <= fallback_boundary:
context.stra_log_text("浮赢回撤 %.0f->%.0f[阈值 %.0f->%.0f],止盈离场" % (self._max_dyn_prof, diffTicks, track_threshold, fallback_boundary))
bNeedExit = True
usertag = "stopprof"
if bNeedExit:
targetprice = self.get_price(newTick, -1) if isLong else self.get_price(newTick, 1)
ids = context.stra_sell(self.__code__, targetprice, abs(curPos), usertag) if isLong else context.stra_buy(self.__code__, price, abs(curPos), usertag)
for localid in ids:
self.__orders__[localid] = localid
# 出场逻辑执行当前完结逻辑
return
开盘前出场的逻辑
有了止盈止损逻辑,咱们还须要增加一段 开盘前出场的逻辑,代码如下:
curMin = context.stra_get_time()
curPos = context.stra_get_position(stdCode)
# 不在交易工夫,则查看是否有持仓
# 如果有持仓,则须要清理
if not self.is_active(curMin):
self._last_atp__ = 0.0
if curPos == 0:
return
self.__to_clear__ = True
else:
self.__to_clear__ = False
# 如果须要清理持仓,且不在撤单过程中
if self.__to_clear__ :
if self.__cancel_cnt__ == 0:
if curPos > 0:
# 以对手价挂单
targetPx = self.get_price(newTick, -1)
ids = context.stra_sell(self.__code__, targetPx, abs(curPos), "deadline")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
elif curPos < 0:
# 以对手价挂单
targetPx = self.get_price(newTick, 1)
ids = context.stra_buy(self.__code__, targetPx, abs(curPos), "deadline")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
return
订单治理逻辑
而后,咱们还须要增加一段 订单治理 的逻辑,代码如下:
def check_orders(self, ctx:HftContext):
#如果未实现订单不为空
ord_cnt = len(self.__orders__.keys())
if ord_cnt > 0 and self.__last_entry_time__ is not None:
#以后工夫,肯定要从 api 获取,不然回测会有问题
now = makeTime(ctx.stra_get_date(), ctx.stra_get_time(), ctx.stra_get_secs())
span = now - self.__last_entry_time__
total_secs = span.total_seconds()
if total_secs >= self.__expsecs__: #如果订单超时,则须要撤单
ctx.stra_log_text("%d 条订单超时撤单" % (ord_cnt))
for localid in self.__orders__:
ctx.stra_cancel(localid)
self.__cancel_cnt__ += 1
ctx.stra_log_text("在途撤复数 -> %d" % (self.__cancel_cnt__))
其余逻辑
除了上述的逻辑之外,咱们还须要解决一些 细节问题,如:
- 解决订单回报,用于更新本地订单的状态;
- 解决成交回报,用于更新入场价格,计算浮动盈亏
- 解决交易通道就绪的回报,用于查看是否有不在治理内的未实现单
残缺源码
整个策略的 残缺代码 如下:
from wtpy import BaseHftStrategy
from wtpy import HftContext
from datetime import datetime
def makeTime(date:int, time:int, secs:int):
'''
将零碎工夫转成 datetime\n
@date 日期,格局如 20200723\n
@time 工夫,准确到分,格局如 0935\n
@secs 秒数,准确到毫秒,格局如 37500
'''
return datetime(year=int(date/10000), month=int(date%10000/100), day=date%100,
hour=int(time/100), minute=time%100, second=int(secs/1000), microsecond=secs%1000*1000)
class HftStraOrderImbalance(BaseHftStrategy):
def __init__(self, name:str, code:str, count:int, lots:int, beta_0:float, beta_r:float, threshold:float,
beta_oi:list, beta_rou:list, expsecs:int, offset:int, freq:int, active_secs:list, stoppl:dict, reserve:int=0):
BaseHftStrategy.__init__(self, name)
'''交易参数'''
self.__code__ = code #交易合约
self.__expsecs__ = expsecs #订单超时秒数,用于管制超时撤单
self.__freq__ = freq #交易频率管制,指定工夫内限度信号数,单位秒
self.__lots__ = lots #单次交易手数
self.count = count #回溯 tick 条数
self.beta_0 = beta_0 #常量系数 + 残差
self.beta_r = beta_r #中间价回归因子系数
self.threshold = threshold #中间价变动阈值
self.beta_oi = beta_oi #成交量不均衡因子系数序列
self.beta_rou = beta_rou #委比因子系数序列
self.active_secs = active_secs #交易工夫区间
self.stoppl = stoppl #止盈止损配置
'''外部数据'''
self.__last_tick__ = None #上一笔行情
self.__orders__ = dict() #策略相干的订单
self.__last_entry_time__ = None #上次入场工夫
self.__cancel_cnt__ = 0 #正在撤销的订单数
self.__channel_ready__ = False #通道是否就绪
self.__comm_info__ = None
self.__to_clear__ = False
self._last_entry_price = 0.0
self._max_dyn_prof = 0.0
self._max_dyn_loss = 0.0
self._last_atp__ = 0.0
def is_active(self, curMin:int) -> bool:
for sec in self.active_secs:
if sec["start"] <= curMin and curMin <= sec["end"]:
return True
return False
def on_init(self, context:HftContext):
'''
策略初始化,启动的时候调用 \n
用于加载自定义数据 \n
@context 策略运行上下文
'''
self.__comm_info__ = context.stra_get_comminfo(self.__code__)
#先订阅实时数据
context.stra_sub_ticks(self.__code__)
self.__ctx__ = context
def check_orders(self, ctx:HftContext):
#如果未实现订单不为空
ord_cnt = len(self.__orders__.keys())
if ord_cnt > 0 and self.__last_entry_time__ is not None:
#以后工夫,肯定要从 api 获取,不然回测会有问题
now = makeTime(ctx.stra_get_date(), ctx.stra_get_time(), ctx.stra_get_secs())
span = now - self.__last_entry_time__
total_secs = span.total_seconds()
if total_secs >= self.__expsecs__: #如果订单超时,则须要撤单
ctx.stra_log_text("%d 条订单超时撤单" % (ord_cnt))
for localid in self.__orders__:
ctx.stra_cancel(localid)
self.__cancel_cnt__ += 1
ctx.stra_log_text("在途撤复数 -> %d" % (self.__cancel_cnt__))
def get_price(self, newTick, pricemode=0):
if pricemode == 0:
return newTick["price"]
elif pricemode == 1:
return newTick["askprice"][0] if len(newTick["askprice"])>0 else newTick["price"]
elif pricemode == -1:
return newTick["bidprice"][0] if len(newTick["bidprice"])>0 else newTick["price"]
def on_tick(self, context:HftContext, stdCode:str, newTick:dict):
if self.__code__ != stdCode:
return
#如果有未实现订单,则进入订单治理逻辑
if len(self.__orders__.keys()) != 0:
self.check_orders(context)
return
if not self.__channel_ready__:
return
curMin = context.stra_get_time()
curPos = context.stra_get_position(stdCode)
# 不在交易工夫,则查看是否有持仓
# 如果有持仓,则须要清理
if not self.is_active(curMin):
self._last_atp__ = 0.0
if curPos == 0:
return
self.__to_clear__ = True
else:
self.__to_clear__ = False
# 如果须要清理持仓,且不在撤单过程中
if self.__to_clear__ :
if self.__cancel_cnt__ == 0:
if curPos > 0:
targetPx = self.get_price(newTick, -1)
ids = context.stra_sell(self.__code__, targetPx, abs(curPos), "deadline")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
elif curPos < 0:
targetPx = self.get_price(newTick, 1)
ids = context.stra_buy(self.__code__, targetPx, abs(curPos), "deadline")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
return
# 止盈止损逻辑
if curPos != 0 and self.stoppl["active"]:
isLong = (curPos > 0)
price = 0
if self.stoppl["calc_price"] == 0:
price = self.get_price(newTick, -1) if isLong else self.get_price(newTick, 1)
else:
price = newTick["price"]
diffTicks = (price - self._last_entry_price)*(1 if isLong else -1) / self.__comm_info__.pricetick
if diffTicks > 0:
self._max_dyn_prof = max(self._max_dyn_prof, diffTicks)
else:
self._max_dyn_loss = min(self._max_dyn_loss, diffTicks)
bNeedExit = False
usertag = ''stop_ticks = self.stoppl["stop_ticks"]
track_threshold = self.stoppl["track_threshold"]
fallback_boundary = self.stoppl["fallback_boundary"]
if diffTicks <= stop_ticks:
context.stra_log_text("浮亏 %.0f 超过 %d 跳,止损离场" % (diffTicks, stop_ticks))
bNeedExit = True
usertag = "stoploss"
elif self._max_dyn_prof >= track_threshold and diffTicks <= fallback_boundary:
context.stra_log_text("浮赢回撤 %.0f->%.0f[阈值 %.0f->%.0f],止盈离场" % (self._max_dyn_prof, diffTicks, track_threshold, fallback_boundary))
bNeedExit = True
usertag = "stopprof"
if bNeedExit:
targetprice = self.get_price(newTick, -1) if isLong else self.get_price(newTick, 1)
ids = context.stra_sell(self.__code__, targetprice, abs(curPos), usertag) if isLong else context.stra_buy(self.__code__, price, abs(curPos), usertag)
for localid in ids:
self.__orders__[localid] = localid
# 出场逻辑执行当前完结逻辑
return
now = makeTime(self.__ctx__.stra_get_date(), self.__ctx__.stra_get_time(), self.__ctx__.stra_get_secs())
# 成交量为 0 且上一个成交均价为 0,则须要退出
if newTick["volumn"] == 0 and self._last_atp__ == 0.0:
return
#如果曾经入场,且有频率限度,则做频率查看
if self.__last_entry_time__ is not None and self.__freq__ != 0:
#以后工夫,肯定要从 api 获取,不然回测会有问题
span = now - self.__last_entry_time__
if span.total_seconds() <= self.__freq__:
return
hisTicks = context.stra_get_ticks(self.__code__, self.count + 1)
if hisTicks.size != self.count+1:
return
if (len(newTick["askprice"]) == 0) or (len(newTick["bidprice"]) == 0):
return
spread = newTick["askprice"][0] - newTick["bidprice"][0]
total_OIR = 0.0
total_rou = 0.0
for i in range(1, self.count + 1):
prevTick = hisTicks.get_tick(i-1)
curTick = hisTicks.get_tick(i)
lastBidPx = self.get_price(prevTick, -1)
lastAskPx = self.get_price(prevTick, 1)
lastBidQty = prevTick["bidqty"][0] if len(prevTick["bidqty"]) > 0 else 0
lastAskQty = prevTick["askqty"][0] if len(prevTick["askqty"]) > 0 else 0
curBidPx = self.get_price(curTick, -1)
curAskPx = self.get_price(curTick, 1)
curBidQty = curTick["bidqty"][0] if len(curTick["bidqty"]) > 0 else 0
curAskQty = curTick["askqty"][0] if len(curTick["askqty"]) > 0 else 0
delta_vb = 0.0
delta_va = 0.0
if curBidPx < lastBidPx:
delta_vb = 0.0
elif curBidPx == lastBidPx:
delta_vb = curBidQty - lastBidQty
else:
delta_vb = curBidQty
if curAskPx < lastAskPx:
delta_va = curAskQty
elif curAskPx == lastAskPx:
delta_va = curAskQty - lastAskQty
else:
delta_va = 0.0
voi = delta_vb - delta_va
total_OIR += self.beta_oi[i-1]*voi/spread
#计算委比
rou = (curBidQty - curAskQty)/(curBidQty + curAskQty)
total_rou += self.beta_rou[i-1]*rou/spread
prevTick = hisTicks.get_tick(-2)
# t- 1 时刻的中间价
prevMP = (self.get_price(prevTick, -1) + self.get_price(prevTick, 1))/2
# 最新的中间价
curMP = (newTick["askprice"][0] + newTick["bidprice"][0])/2
# 两个快照之间的成交均价
if newTick["volumn"] != 0:
avgTrdPx = newTick["turn_over"]/newTick["volumn"]/self.__comm_info__.volscale
elif self._last_atp__!= 0:
avgTrdPx = self._last_atp__
else:
avgTrdPx = curMP
self._last_atp__ = avgTrdPx
# 计算中间价回归因子
curR = avgTrdPx - (prevMP + curMP) / 2
# 计算预期中间价变动量
efpc = self.beta_0 + total_OIR + total_rou + self.beta_r * curR / spread
if efpc >= self.threshold:
targetPos = self.__lots__
diffPos = targetPos - curPos
if diffPos != 0.0:
targetPx = newTick["askprice"][0]
ids = context.stra_buy(self.__code__, targetPx, abs(diffPos), "enterlong")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
self.__last_entry_time__ = now
self._max_dyn_prof = 0
self._max_dyn_loss = 0
elif efpc <= -self.threshold:
targetPos = -self.__lots__
diffPos = targetPos - curPos
if diffPos != 0:
targetPx = newTick["bidprice"][0]
ids = context.stra_sell(self.__code__, targetPx, abs(diffPos), "entershort")
#将订单号退出到治理中
for localid in ids:
self.__orders__[localid] = localid
self.__last_entry_time__ = now
self._max_dyn_prof = 0.0
self._max_dyn_loss = 0.0
def on_bar(self, context:HftContext, stdCode:str, period:str, newBar:dict):
return
def on_channel_ready(self, context:HftContext):
undone = context.stra_get_undone(self.__code__)
if undone != 0 and len(self.__orders__.keys()) == 0:
context.stra_log_text("%s 存在不在治理中的未实现单 %f 手,全副撤销" % (self.__code__, undone))
isBuy = (undone > 0)
ids = context.stra_cancel_all(self.__code__, isBuy)
for localid in ids:
self.__orders__[localid] = localid
self.__cancel_cnt__ += len(ids)
context.stra_log_text("在途撤复数 -> %d" % (self.__cancel_cnt__))
self.__channel_ready__ = True
def on_channel_lost(self, context:HftContext):
context.stra_log_text("交易通道连贯失落")
self.__channel_ready__ = False
def on_entrust(self, context:HftContext, localid:int, stdCode:str, bSucc:bool, msg:str, userTag:str):
return
def on_order(self, context:HftContext, localid:int, stdCode:str, isBuy:bool, totalQty:float, leftQty:float, price:float, isCanceled:bool, userTag:str):
if localid not in self.__orders__:
return
if isCanceled or leftQty == 0:
self.__orders__.pop(localid)
if self.__cancel_cnt__ > 0:
self.__cancel_cnt__ -= 1
self.__ctx__.stra_log_text("在途撤复数 -> %d" % (self.__cancel_cnt__))
return
def on_trade(self, context:HftContext, localid:int, stdCode:str, isBuy:bool, qty:float, price:float, userTag:str):
self._last_entry_price = price
模型回测
模型编码实现当前,咱们就能够思考模型回测了。
数据筹备
笔者共享了股指期货主力合约 2020 年 12 月到 2021 年 1 月份的 tick 数据到百度网盘中,地址如下:
https://pan.baidu.com/s/1Bdxh… 提取码:d6bh
文件名为CFFEX.IF.HOT_ticks_20201201_20210118.7z,读者能够自行获取。
数据格式为 WonderTrader 外部压缩寄存的数据格式 .dsb
,如果要做回归的话,那么还须要将.dsb
文件导出为 csv
文件。wtpy
中的 WtDtHelper
模块中就提供了数据转换的办法,调用代码如下:
from wtpy.wrapper import WtDataHelper
import os
dtHelper = WtDataHelper()
dtHelper.dump_ticks('dsb 文件所在的目录', '要输入的 csv 目录')
csv 数据导出当前,就能够利用 python 读取数据进行模型线性回归了。
回测入口
线性回归做好当前,失去一组系数。而后编写回测入口脚本,代码如下:
from wtpy import WtBtEngine, EngineType
from strategies.HftStraOrdImbal import HftStraOrderImbalance
def read_params_from_csv(filename) -> dict:
params = {
"beta_0":0.0,
"beta_r":0.0,
"beta_oi":[],
"beta_rou":[]}
f = open(filename, "r")
lines = f.readlines()
f.close()
for row in range(1, len(lines)):
curLine = lines[row]
ay = curLine.split(",")
if row == 1:
params["beta_0"] = float(ay[1])
elif row == 14:
params["beta_r"] = float(ay[1])
elif row > 1 and row <=7:
params["beta_oi"].append(float(ay[1]))
elif row > 7 and row <=13:
params["beta_rou"].append(float(ay[1]))
return params
if __name__ == "__main__":
# 创立一个运行环境,并退出策略
engine = WtBtEngine(EngineType.ET_HFT)
engine.init('.\\Common\\', "configbt.json")
engine.configBacktest(202101040900,202101181500)
engine.configBTStorage(mode="csv", path="./storage/")
engine.commitBTConfig()
active_sections = [
{
"start": 931,
"end": 1457
}
]
stop_params = {
"active":True, # 是否启用止盈止损
"stop_ticks": -25, # 止损跳数,如果浮亏达到该跳数,则间接止损
"track_threshold": 15, # 追踪止盈阈值跳数,超过该阈值则触发追踪止盈
"fallback_boundary": 2, # 追踪止盈回撤边界跳数,即浮盈跳数回撤到该边界值以下,立刻止盈
"calc_price":0
}
params = read_params_from_csv('IF_10ticks_20201201_20201231.csv')
straInfo = HftStraOrderImbalance(name='hft_IF',
code="CFFEX.IF.HOT",
count=6,
lots=1,
threshold=0.3,
expsecs=5,
offset=0,
freq=0,
active_secs=active_sections,
stoppl=stop_params,
**params)
engine.set_hft_strategy(straInfo)
engine.run_backtest()
kw = input('press any key to exit\n')
engine.release_backtest()
回测后果
咱们应用 2020 年 12 月的全副 tick
进行线性回归,失去的参数用于 2021 年 1 月回测失去的绩效如下:
date,closeprofit,positionprofit,dynbalance,fee
20210104,-11160.00,0.00,-20941.01,9781.01
20210105,-20100.00,0.00,-40712.85,20612.85
20210106,-60.00,0.00,-31828.36,31768.36
20210107,4140.00,0.00,-40344.73,44484.73
20210108,-11760.00,0.00,-66329.60,54569.60
20210111,-41280.00,0.00,-107444.80,66164.80
20210112,-66000.00,0.00,-142723.28,76723.28
20210113,-87240.00,0.00,-175926.18,88686.18
20210114,-106680.00,0.00,-202219.21,95539.21
20210115,-96840.00,0.00,-197721.78,100881.78
20210118,-110760.00,0.00,-219671.31,108911.31
从下面的绩效能够看出,该模型的体现倒是比较稳定,惋惜是稳固的亏钱 [手动狗头],切实是 难堪大用。
绩效剖析
策略体现尽管难以入目,然而咱们还是要进行绩效剖析,看看有没有能够改良的点。WonderTrader针对 HFT
回测生成了 回合明细 closes.csv
,能够看到每个回合的进场点和出场点,以及每个回合 潜在最大收益 和潜在最大亏损。用户能够利用回合明细依据需要自行剖析每个回合进出场的点位是否正当,以及如何优化等问题。
code,direct,opentime,openprice,closetime,closeprice,qty,profit,maxprofit,maxloss,totalprofit,entertag,exittag
CFFEX.IF.HOT,SHORT,20210104093156400,5221,20210104093218400,5221,1,-0,480,-540,0,entershort,enterlong
CFFEX.IF.HOT,LONG,20210104093218400,5221,20210104093219900,5222,1,300,300,0,300,enterlong,entershort
CFFEX.IF.HOT,SHORT,20210104093219900,5222,20210104093226900,5223,1,-300,120,-480,0,entershort,enterlong
CFFEX.IF.HOT,LONG,20210104093226900,5223,20210104093301400,5216.8,1,-1860,240,-2040,-1860,enterlong,stoploss
CFFEX.IF.HOT,SHORT,20210104093317400,5210.8,20210104093319900,5211.2,1,-120,0,-480,-1980,entershort,enterlong
CFFEX.IF.HOT,LONG,20210104093320400,5210.6,20210104093347900,5211.4,1,240,540,-1080,-1740,enterlong,entershort
CFFEX.IF.HOT,SHORT,20210104093347900,5211.4,20210104093410900,5211,1,120,660,-480,-1620,entershort,enterlong
CFFEX.IF.HOT,LONG,20210104093410900,5211,20210104093424400,5203.4,1,-2280,0,-2460,-3900,enterlong,stoploss
CFFEX.IF.HOT,SHORT,20210104093432900,5201.2,20210104093446900,5207.2,1,-1800,120,-2040,-5700,entershort,stoploss
结束语
到此为止,一个残缺的 HFT
策略开发流程就走完了。尽管该模型仿佛曾经生效,然而笔者并没有深入分析以后 IF
的市场和原模型回测的工夫区间的 IF
的市场之间的差异,另外笔者也没有拓展到别的种类进行剖析。再者,笔者的次要目标是演示 HFT
策略的研发流程,所以对于模型方面不免有所疏漏。模型方面的做法,请各位读者稍作参考即可。
值得一提的是,从下面的源码中能够看到,WonderTrader针对 HFT
策略的交易接口简化成了 买、卖 两个交易接口,目标就是为了简化策略开发的逻辑,让策略人研发人员将更多的精力集中在策略逻辑自身。而交易对应的开平逻辑,会在 C++
外围通过配置文件 actionpolicy.json
进行管制,主动解决开平。另外,该策略应用 Python
开发,而 C++
版本的雷同策略,回测工夫约为 Python
版本的十分之一左右,如果有读者想要利用 WonderTrader 上高频,在开发语言方面,还请各位读者认真斟酌。
笔者也会一直地欠缺 WonderTrader 在HFT
策略方面的性能。也心愿各位读者能多多斧正 WonderTrader 的疏漏,帮忙 WonderTrader 欠缺起来,也能为更多的用户提供更好的基础设施服务。
最初再来一波广告
WonderTrader的 github
地址:https://github.com/wondertrad…
WonderTrader官网地址:https://wondertrader.github.io
wtpy的 github
地址:https://github.com/wondertrad…